summaryrefslogtreecommitdiff
path: root/drivers/nfc/st21nfca/st21nfca.h
AgeCommit message (Collapse)Author
2015-01-28NFC: st21nfca: Adding support for secure elementChristophe Ricard
st21nfca has 1 physical SWP line and can support up to 2 secure elements (UICC & eSE) thanks to an external switch managed with a gpio. The platform integrator needs to specify thanks to 2 initialization properties, uicc-present and ese-present, if it is suppose to have uicc and/or ese. Of course if the platform does not have an external switch, only one kind of secure element can be supported. Those parameters are under platform integrator responsibilities. During initialization, the white_list will be set according to those parameters. The discovery_se function will assume a secure element is physically present according to uicc-present and ese-present values and will add it to the secure element list. On ese activation, the atr is retrieved to calculate a command exchange timeout based on the first atr(TB) value. The se_io will allow to transfer data over SWP. 2 kind of events may appear after a data is sent over: - ST21NFCA_EVT_TRANSMIT_DATA when receiving an apdu answer - ST21NFCA_EVT_WTX_REQUEST when the secure element needs more time than expected to compute a command. If this timeout expired, a first recovery tentative consist to send a simple software reset proprietary command. If this tentative still fail, a second recovery tentative consist to send a hardware reset proprietary command. This function is only relevant for eSE like secure element. This patch also change the way a pipe is referenced. There can be different pipe connected to the same gate with different host destination (ex: CONNECTIVITY). In order to keep host information every pipe are reference with a tuple (gate, host). In order to reduce changes, we are keeping unchanged the way a gate is addressed on the Terminal Host. However, this is working because we consider the apdu reader gate is only present on the eSE slot also the connectivity gate cannot give a reliable value; it will give the latest stored pipe value. Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2014-12-02NFC: st21nfca: Rework st21nfca_hci_event_received to route event to relevent ↵Christophe Ricard
gate. As many event with the same id can come from several gates, it will be easier to manage each of them by gate. Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2014-09-08NFC: st21nfca: Clean up st21nfca.h macrosChristophe Ricard
Clean up st21nfca.h macros and move the one only used in st21nfca.c. Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2014-07-23NFC: st21nfca: Adding P2P support to st21nfca in Initiator & Target modeChristophe Ricard
Support for Initiator and Target mode with ISO18092 commands support: - ATR_REQ/ATR_RES - PSL_REQ/PSL_RES - DEP_REQ/DEP_RES Work based on net/nfc/digital_dep.c. st21nfca is using: - Gate reader F for P2P in initiator mode. - Gate card F for P2P in target mode. Felica tag and p2p are differentiated with NFCID2. When starting with 01FE it is acting in p2p mode. On complete_target_discovered on ST21NFCA_RF_READER_F_GATE supported_protocols is set to NFC_PROTO_NFC_DEP_MASK for P2P. Tested against: Nexus S, Galaxy S2, Galaxy S3, Galaxy S3 Mini, Nexus 4 & Nexus 5. Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>
2014-04-22NFC: ST21NFCA: Add driver for STMicroelectronics ST21NFCA NFC ChipChristophe Ricard
Add driver for STMicroelectronics ST21NFCA NFC controller. ST21NFCA is using HCI protocol, shdlc as LLC layer & I2C as communication protocol. Adding support for Reader/Writer mode with Tag type 1/2/3/4 A & B. It is using proprietary gate 15 for ISO14443-3 such as type 1 & type 2 tags. It is using proprietary gate 14 for type F tags. ST21NFCA_DEVICE_MGNT_GATE gives access to proprietary CLF configuration. Standard gate for ISO14443-4 A (13) & B (11) are also used. ST21NFCA specific mecanism: One particular point to notice for the data handling is that frame does not contain any length value. Therefore the i2c part of this driver is managing the reception with a read length sequence until the end of frame (0x7e) is reached. In order to avoid conflict between sof & eof a mecanism called byte stuffing concist of an escape byte (0x7d) insertion before special byte (0x7e, 0x7d). The special byte is then xored with 0x20. In this driver, When data are available in the CLF, the interrupt gpio is driven to active state and triggered an interrupt. Once the i2c_master_recv start, the interrupt gpio is driven to idle state until its complete. If the frame is incomplete or data are still available, interrupts will be triggered again. Signed-off-by: Christophe Ricard <christophe-h.ricard@st.com> Signed-off-by: Samuel Ortiz <sameo@linux.intel.com>