summaryrefslogtreecommitdiff
path: root/drivers/md/raid5.c
AgeCommit message (Collapse)Author
2017-08-23block: replace bi_bdev with a gendisk pointer and partitions indexChristoph Hellwig
This way we don't need a block_device structure to submit I/O. The block_device has different life time rules from the gendisk and request_queue and is usually only available when the block device node is open. Other callers need to explicitly create one (e.g. the lightnvm passthrough code, or the new nvme multipathing code). For the actual I/O path all that we need is the gendisk, which exists once per block device. But given that the block layer also does partition remapping we additionally need a partition index, which is used for said remapping in generic_make_request. Note that all the block drivers generally want request_queue or sometimes the gendisk, so this removes a layer of indirection all over the stack. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-08-23raid5: remove a call to get_start_sectChristoph Hellwig
The block layer always remaps partitions before calling into the ->make_request methods of drivers. Thus the call to get_start_sect in in_chunk_boundary will always return 0 and can be removed. Reviewed-by: Shaohua Li <shli@fb.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-07-24md/raid5: add thread_group worker async_tx_issue_pending_allOfer Heifetz
Since thread_group worker and raid5d kthread are not in sync, if worker writes stripe before raid5d then requests will be waiting for issue_pendig. Issue observed when building raid5 with ext4, in some build runs jbd2 would get hung and requests were waiting in the HW engine waiting to be issued. Fix this by adding a call to async_tx_issue_pending_all in the raid5_do_work. Signed-off-by: Ofer Heifetz <oferh@marvell.com> Cc: stable@vger.kernel.org Signed-off-by: Shaohua Li <shli@fb.com>
2017-07-21md: simplify code with bio_io_errorGuoqing Jiang
Since bio_io_error sets bi_status to BLK_STS_IOERR, and calls bio_endio, so we can use it directly. And as mentioned by Shaohua, there are also two places in raid5.c can use bio_io_error either. Signed-off-by: Guoqing Jiang <gqjiang@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-07-10Raid5 should update rdev->sectors after reshapeXiao Ni
The raid5 md device is created by the disks which we don't use the total size. For example, the size of the device is 5G and it just uses 3G of the devices to create one raid5 device. Then change the chunksize and wait reshape to finish. After reshape finishing stop the raid and assemble it again. It fails. mdadm -CR /dev/md0 -l5 -n3 /dev/loop[0-2] --size=3G --chunk=32 --assume-clean mdadm /dev/md0 --grow --chunk=64 wait reshape to finish mdadm -S /dev/md0 mdadm -As The error messages: [197519.814302] md: loop1 does not have a valid v1.2 superblock, not importing! [197519.821686] md: md_import_device returned -22 After reshape the data offset is changed. It selects backwards direction in this condition. In function super_1_load it compares the available space of the underlying device with sb->data_size. The new data offset gets bigger after reshape. So super_1_load returns -EINVAL. rdev->sectors is updated in md_finish_reshape. Then sb->data_size is set in super_1_sync based on rdev->sectors. So add md_finish_reshape in end_reshape. Signed-off-by: Xiao Ni <xni@redhat.com> Acked-by: Guoqing Jiang <gqjiang@suse.com> Cc: stable@vger.kernel.org Signed-off-by: Shaohua Li <shli@fb.com>
2017-07-08Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/mdLinus Torvalds
Pull MD update from Shaohua Li: - fixed deadlock in MD suspend and a potential bug in bio allocation (Neil Brown) - fixed signal issue (Mikulas Patocka) - fixed typo in FailFast test (Guoqing Jiang) - other trival fixes * 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md: MD: fix sleep in atomic MD: fix a null dereference md: use a separate bio_set for synchronous IO. md: change the initialization value for a spare device spot to MD_DISK_ROLE_SPARE md/raid1: remove unused bio in sync_request_write md/raid10: fix FailFast test for wrong device md: don't use flush_signals in userspace processes md: fix deadlock between mddev_suspend() and md_write_start()
2017-06-18blk: replace bioset_create_nobvec() with a flags arg to bioset_create()NeilBrown
"flags" arguments are often seen as good API design as they allow easy extensibility. bioset_create_nobvec() is implemented internally as a variation in flags passed to __bioset_create(). To support future extension, make the internal structure part of the API. i.e. add a 'flags' argument to bioset_create() and discard bioset_create_nobvec(). Note that the bio_split allocations in drivers/md/raid* do not need the bvec mempool - they should have used bioset_create_nobvec(). Suggested-by: Christoph Hellwig <hch@infradead.org> Reviewed-by: Christoph Hellwig <hch@infradead.org> Reviewed-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-13md: don't use flush_signals in userspace processesMikulas Patocka
The function flush_signals clears all pending signals for the process. It may be used by kernel threads when we need to prepare a kernel thread for responding to signals. However using this function for an userspaces processes is incorrect - clearing signals without the program expecting it can cause misbehavior. The raid1 and raid5 code uses flush_signals in its request routine because it wants to prepare for an interruptible wait. This patch drops flush_signals and uses sigprocmask instead to block all signals (including SIGKILL) around the schedule() call. The signals are not lost, but the schedule() call won't respond to them. Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Cc: stable@vger.kernel.org Acked-by: NeilBrown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-06-13md: fix deadlock between mddev_suspend() and md_write_start()NeilBrown
If mddev_suspend() races with md_write_start() we can deadlock with mddev_suspend() waiting for the request that is currently in md_write_start() to complete the ->make_request() call, and md_write_start() waiting for the metadata to be updated to mark the array as 'dirty'. As metadata updates done by md_check_recovery() only happen then the mddev_lock() can be claimed, and as mddev_suspend() is often called with the lock held, these threads wait indefinitely for each other. We fix this by having md_write_start() abort if mddev_suspend() is happening, and ->make_request() aborts if md_write_start() aborted. md_make_request() can detect this abort, decrease the ->active_io count, and wait for mddev_suspend(). Reported-by: Nix <nix@esperi.org.uk> Fix: 68866e425be2(MD: no sync IO while suspended) Cc: stable@vger.kernel.org Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-06-12Merge tag 'v4.12-rc5' into for-4.13/blockJens Axboe
We've already got a few conflicts and upcoming work depends on some of the changes that have gone into mainline as regression fixes for this series. Pull in 4.12-rc5 to resolve these conflicts and make it easier on down stream trees to continue working on 4.13 changes. Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-09block: switch bios to blk_status_tChristoph Hellwig
Replace bi_error with a new bi_status to allow for a clear conversion. Note that device mapper overloaded bi_error with a private value, which we'll have to keep arround at least for now and thus propagate to a proper blk_status_t value. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-06-05md: initialise ->writes_pending in personality modules.NeilBrown
The new per-cpu counter for writes_pending is initialised in md_alloc(), which is not called by dm-raid. So dm-raid fails when md_write_start() is called. Move the initialization to the personality modules that need it. This way it is always initialised when needed, but isn't unnecessarily initialized (requiring memory allocation) when the personality doesn't use writes_pending. Reported-by: Heinz Mauelshagen <heinzm@redhat.com> Fixes: 4ad23a976413 ("MD: use per-cpu counter for writes_pending") Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-05-24md: report sector of stripes with check mismatchesNix
This makes it possible, with appropriate filesystem support, for a sysadmin to tell what is affected by the mismatch, and whether it should be ignored (if it's inside a swap partition, for instance). We ratelimit to prevent log flooding: if there are so many mismatches that ratelimiting is necessary, the individual messages are relatively unlikely to be important (either the machine is swapping like crazy or something is very wrong with the disk). Signed-off-by: Nick Alcock <nick.alcock@oracle.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-05-11md/r5cache: handle sync with data in write back cacheSong Liu
Currently, sync of raid456 array cannot make progress when hitting data in writeback r5cache. This patch fixes this issue by flushing cached data of the stripe before processing the sync request. This is achived by: 1. In handle_stripe(), do not set STRIPE_SYNCING if the stripe is in write back cache; 2. In r5c_try_caching_write(), handle the stripe in sync with write through; 3. In do_release_stripe(), make stripe in sync write out and send it to the state machine. Shaohua: explictly set STRIPE_HANDLE after write out completed Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-05-11md/r5cache: gracefully handle journal device errors for writeback modeSong Liu
For the raid456 with writeback cache, when journal device failed during normal operation, it is still possible to persist all data, as all pending data is still in stripe cache. However, it is necessary to handle journal failure gracefully. During journal failures, the following logic handles the graceful shutdown of journal: 1. raid5_error() marks the device as Faulty and schedules async work log->disable_writeback_work; 2. In disable_writeback_work (r5c_disable_writeback_async), the mddev is suspended, set to write through, and then resumed. mddev_suspend() flushes all cached stripes; 3. All cached stripes need to be flushed carefully to the RAID array. This patch fixes issues within the process above: 1. In r5c_update_on_rdev_error() schedule disable_writeback_work for journal failures; 2. In r5c_disable_writeback_async(), wait for MD_SB_CHANGE_PENDING, since raid5_error() updates superblock. 3. In handle_stripe(), allow stripes with data in journal (s.injournal > 0) to make progress during log_failed; 4. In delay_towrite(), if log failed only process data in the cache (skip new writes in dev->towrite); 5. In __get_priority_stripe(), process loprio_list during journal device failures. 6. In raid5_remove_disk(), wait for all cached stripes are flushed before calling log_exit(). Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-05-08md: don't return -EAGAIN in md_allow_write for external metadata arraysArtur Paszkiewicz
This essentially reverts commit b5470dc5fc18 ("md: resolve external metadata handling deadlock in md_allow_write") with some adjustments. Since commit 6791875e2e53 ("md: make reconfig_mutex optional for writes to md sysfs files.") changing array_state to 'active' does not use mddev_lock() and will not cause a deadlock with md_allow_write(). This revert simplifies userspace tools that write to sysfs attributes like "stripe_cache_size" or "consistency_policy" because it removes the need for special handling for external metadata arrays, checking for EAGAIN and retrying the write. Signed-off-by: Artur Paszkiewicz <artur.paszkiewicz@intel.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-05-04md/raid5: make use of spin_lock_irq over local_irq_disable + spin_lockJulia Cartwright
On mainline, there is no functional difference, just less code, and symmetric lock/unlock paths. On PREEMPT_RT builds, this fixes the following warning, seen by Alexander GQ Gerasiov, due to the sleeping nature of spinlocks. BUG: sleeping function called from invalid context at kernel/locking/rtmutex.c:993 in_atomic(): 0, irqs_disabled(): 1, pid: 58, name: kworker/u12:1 CPU: 5 PID: 58 Comm: kworker/u12:1 Tainted: G W 4.9.20-rt16-stand6-686 #1 Hardware name: Supermicro SYS-5027R-WRF/X9SRW-F, BIOS 3.2a 10/28/2015 Workqueue: writeback wb_workfn (flush-253:0) Call Trace: dump_stack+0x47/0x68 ? migrate_enable+0x4a/0xf0 ___might_sleep+0x101/0x180 rt_spin_lock+0x17/0x40 add_stripe_bio+0x4e3/0x6c0 [raid456] ? preempt_count_add+0x42/0xb0 raid5_make_request+0x737/0xdd0 [raid456] Reported-by: Alexander GQ Gerasiov <gq@redlab-i.ru> Tested-by: Alexander GQ Gerasiov <gq@redlab-i.ru> Signed-off-by: Julia Cartwright <julia@ni.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-05-01Merge branch 'md-next' into md-linusShaohua Li
2017-04-25md: clear WantReplacement once disk is removedGuoqing Jiang
We can clear 'WantReplacement' flag directly no matter it's replacement existed or not since the semantic is same as before. Also since the disk is removed from array, then it is straightforward to remove 'WantReplacement' flag and the comments in raid10/5 can be removed as well. Signed-off-by: Guoqing Jiang <gqjiang@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-04-11md/raid5: make chunk_aligned_read() split bios more cleanly.NeilBrown
chunk_aligned_read() currently uses fs_bio_set - which is meant for filesystems to use - and loops if multiple splits are needed, which is not best practice. As this is only used for READ requests, not writes, it is unlikely to cause a problem. However it is best to be consistent in how we split bios, and to follow the pattern used in raid1/raid10. So create a private bioset, bio_split, and use it to perform a single split, submitting the remainder to generic_make_request() for later processing. Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-04-10raid5-ppl: partial parity calculation optimizationArtur Paszkiewicz
In case of read-modify-write, partial partity is the same as the result of ops_run_prexor5(), so we can just copy sh->dev[pd_idx].page into sh->ppl_page instead of calculating it again. Signed-off-by: Artur Paszkiewicz <artur.paszkiewicz@intel.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-04-10raid5-ppl: use resize_stripes() when enabling or disabling pplArtur Paszkiewicz
Use resize_stripes() instead of raid5_reset_stripe_cache() to allocate or free sh->ppl_page at runtime for all stripes in the stripe cache. raid5_reset_stripe_cache() required suspending the mddev and could deadlock because of GFP_KERNEL allocations. Move the 'newsize' check to check_reshape() to allow reallocating the stripes with the same number of disks. Allocate sh->ppl_page in alloc_stripe() instead of grow_buffers(). Pass 'struct r5conf *conf' as a parameter to alloc_stripe() because it is needed to check whether to allocate ppl_page. Add free_stripe() and use it to free stripes rather than directly call kmem_cache_free(). Also free sh->ppl_page in free_stripe(). Set MD_HAS_PPL at the end of ppl_init_log() instead of explicitly setting it in advance and add another parameter to log_init() to allow calling ppl_init_log() without the bit set. Don't try to calculate partial parity or add a stripe to log if it does not have ppl_page set. Enabling ppl can now be performed without suspending the mddev, because the log won't be used until new stripes are allocated with ppl_page. Calling mddev_suspend/resume is still necessary when disabling ppl, because we want all stripes to finish before stopping the log, but resize_stripes() can be called after mddev_resume() when ppl is no longer active. Suggested-by: NeilBrown <neilb@suse.com> Signed-off-by: Artur Paszkiewicz <artur.paszkiewicz@intel.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-04-10md/raid6: Fix anomily when recovering a single device in RAID6.NeilBrown
When recoverying a single missing/failed device in a RAID6, those stripes where the Q block is on the missing device are handled a bit differently. In these cases it is easy to check that the P block is correct, so we do. This results in the P block be destroy. Consequently the P block needs to be read a second time in order to compute Q. This causes lots of seeks and hurts performance. It shouldn't be necessary to re-read P as it can be computed from the DATA. But we only compute blocks on missing devices, since c337869d9501 ("md: do not compute parity unless it is on a failed drive"). So relax the change made in that commit to allow computing of the P block in a RAID6 which it is the only missing that block. This makes RAID6 recovery run much faster as the disk just "before" the recovering device is no longer seeking back-and-forth. Reported-by-tested-by: Brad Campbell <lists2009@fnarfbargle.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-04-10md: update slab_cache before releasing new stripes when stripes resizingDennis Yang
When growing raid5 device on machine with small memory, there is chance that mdadm will be killed and the following bug report can be observed. The same bug could also be reproduced in linux-4.10.6. [57600.075774] BUG: unable to handle kernel NULL pointer dereference at (null) [57600.083796] IP: [<ffffffff81a6aa87>] _raw_spin_lock+0x7/0x20 [57600.110378] PGD 421cf067 PUD 4442d067 PMD 0 [57600.114678] Oops: 0002 [#1] SMP [57600.180799] CPU: 1 PID: 25990 Comm: mdadm Tainted: P O 4.2.8 #1 [57600.187849] Hardware name: To be filled by O.E.M. To be filled by O.E.M./MAHOBAY, BIOS QV05AR66 03/06/2013 [57600.197490] task: ffff880044e47240 ti: ffff880043070000 task.ti: ffff880043070000 [57600.204963] RIP: 0010:[<ffffffff81a6aa87>] [<ffffffff81a6aa87>] _raw_spin_lock+0x7/0x20 [57600.213057] RSP: 0018:ffff880043073810 EFLAGS: 00010046 [57600.218359] RAX: 0000000000000000 RBX: 000000000000000c RCX: ffff88011e296dd0 [57600.225486] RDX: 0000000000000001 RSI: ffffe8ffffcb46c0 RDI: 0000000000000000 [57600.232613] RBP: ffff880043073878 R08: ffff88011e5f8170 R09: 0000000000000282 [57600.239739] R10: 0000000000000005 R11: 28f5c28f5c28f5c3 R12: ffff880043073838 [57600.246872] R13: ffffe8ffffcb46c0 R14: 0000000000000000 R15: ffff8800b9706a00 [57600.253999] FS: 00007f576106c700(0000) GS:ffff88011e280000(0000) knlGS:0000000000000000 [57600.262078] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [57600.267817] CR2: 0000000000000000 CR3: 00000000428fe000 CR4: 00000000001406e0 [57600.274942] Stack: [57600.276949] ffffffff8114ee35 ffff880043073868 0000000000000282 000000000000eb3f [57600.284383] ffffffff81119043 ffff880043073838 ffff880043073838 ffff88003e197b98 [57600.291820] ffffe8ffffcb46c0 ffff88003e197360 0000000000000286 ffff880043073968 [57600.299254] Call Trace: [57600.301698] [<ffffffff8114ee35>] ? cache_flusharray+0x35/0xe0 [57600.307523] [<ffffffff81119043>] ? __page_cache_release+0x23/0x110 [57600.313779] [<ffffffff8114eb53>] kmem_cache_free+0x63/0xc0 [57600.319344] [<ffffffff81579942>] drop_one_stripe+0x62/0x90 [57600.324915] [<ffffffff81579b5b>] raid5_cache_scan+0x8b/0xb0 [57600.330563] [<ffffffff8111b98a>] shrink_slab.part.36+0x19a/0x250 [57600.336650] [<ffffffff8111e38c>] shrink_zone+0x23c/0x250 [57600.342039] [<ffffffff8111e4f3>] do_try_to_free_pages+0x153/0x420 [57600.348210] [<ffffffff8111e851>] try_to_free_pages+0x91/0xa0 [57600.353959] [<ffffffff811145b1>] __alloc_pages_nodemask+0x4d1/0x8b0 [57600.360303] [<ffffffff8157a30b>] check_reshape+0x62b/0x770 [57600.365866] [<ffffffff8157a4a5>] raid5_check_reshape+0x55/0xa0 [57600.371778] [<ffffffff81583df7>] update_raid_disks+0xc7/0x110 [57600.377604] [<ffffffff81592b73>] md_ioctl+0xd83/0x1b10 [57600.382827] [<ffffffff81385380>] blkdev_ioctl+0x170/0x690 [57600.388307] [<ffffffff81195238>] block_ioctl+0x38/0x40 [57600.393525] [<ffffffff811731c5>] do_vfs_ioctl+0x2b5/0x480 [57600.399010] [<ffffffff8115e07b>] ? vfs_write+0x14b/0x1f0 [57600.404400] [<ffffffff811733cc>] SyS_ioctl+0x3c/0x70 [57600.409447] [<ffffffff81a6ad97>] entry_SYSCALL_64_fastpath+0x12/0x6a [57600.415875] Code: 00 00 00 00 55 48 89 e5 8b 07 85 c0 74 04 31 c0 5d c3 ba 01 00 00 00 f0 0f b1 17 85 c0 75 ef b0 01 5d c3 90 31 c0 ba 01 00 00 00 <f0> 0f b1 17 85 c0 75 01 c3 55 89 c6 48 89 e5 e8 85 d1 63 ff 5d [57600.435460] RIP [<ffffffff81a6aa87>] _raw_spin_lock+0x7/0x20 [57600.441208] RSP <ffff880043073810> [57600.444690] CR2: 0000000000000000 [57600.448000] ---[ end trace cbc6b5cc4bf9831d ]--- The problem is that resize_stripes() releases new stripe_heads before assigning new slab cache to conf->slab_cache. If the shrinker function raid5_cache_scan() gets called after resize_stripes() starting releasing new stripes but right before new slab cache being assigned, it is possible that these new stripe_heads will be freed with the old slab_cache which was already been destoryed and that triggers this bug. Signed-off-by: Dennis Yang <dennisyang@qnap.com> Fixes: edbe83ab4c27 ("md/raid5: allow the stripe_cache to grow and shrink.") Cc: stable@vger.kernel.org (4.1+) Reviewed-by: NeilBrown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-04-08block: remove the discard_zeroes_data flagChristoph Hellwig
Now that we use the proper REQ_OP_WRITE_ZEROES operation everywhere we can kill this hack. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-08md: support REQ_OP_WRITE_ZEROESChristoph Hellwig
Copy & paste from the REQ_OP_WRITE_SAME code. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-07block: trace completion of all bios.NeilBrown
Currently only dm and md/raid5 bios trigger trace_block_bio_complete(). Now that we have bio_chain() and bio_inc_remaining(), it is not possible, in general, for a driver to know when the bio is really complete. Only bio_endio() knows that. So move the trace_block_bio_complete() call to bio_endio(). Now trace_block_bio_complete() pairs with trace_block_bio_queue(). Any bio for which a 'queue' event is traced, will subsequently generate a 'complete' event. There are a few cases where completion tracing is not wanted. 1/ If blk_update_request() has already generated a completion trace event at the 'request' level, there is no point generating one at the bio level too. In this case the bi_sector and bi_size will have changed, so the bio level event would be wrong 2/ If the bio hasn't actually been queued yet, but is being aborted early, then a trace event could be confusing. Some filesystems call bio_endio() but do not want tracing. 3/ The bio_integrity code interposes itself by replacing bi_end_io, then restoring it and calling bio_endio() again. This would produce two identical trace events if left like that. To handle these, we introduce a flag BIO_TRACE_COMPLETION and only produce the trace event when this is set. We address point 1 above by clearing the flag in blk_update_request(). We address point 2 above by only setting the flag when generic_make_request() is called. We address point 3 above by clearing the flag after generating a completion event. When bio_split() is used on a bio, particularly in blk_queue_split(), there is an extra complication. A new bio is split off the front, and may be handle directly without going through generic_make_request(). The old bio, which has been advanced, is passed to generic_make_request(), so it will trigger a trace event a second time. Probably the best result when a split happens is to see a single 'queue' event for the whole bio, then multiple 'complete' events - one for each component. To achieve this was can: - copy the BIO_TRACE_COMPLETION flag to the new bio in bio_split() - avoid generating a 'queue' event if BIO_TRACE_COMPLETION is already set. This way, the split-off bio won't create a queue event, the original won't either even if it re-submitted to generic_make_request(), but both will produce completion events, each for their own range. So if generic_make_request() is called (which generates a QUEUED event), then bi_endio() will create a single COMPLETE event for each range that the bio is split into, unless the driver has explicitly requested it not to. Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-03-27md/raid5: use consistency_policy to remove journal featureSong Liu
When journal device of an array fails, the array is forced into read-only mode. To make the array normal without adding another journal device, we need to remove journal _feature_ from the array. This patch allows remove journal _feature_ from an array, For journal existing journal should be either missing or faulty. To remove journal feature, it is necessary to remove the journal device first: mdadm --fail /dev/md0 /dev/sdb mdadm: set /dev/sdb faulty in /dev/md0 mdadm --remove /dev/md0 /dev/sdb mdadm: hot removed /dev/sdb from /dev/md0 Then the journal feature can be removed by echoing into the sysfs file: cat /sys/block/md0/md/consistency_policy journal echo resync > /sys/block/md0/md/consistency_policy cat /sys/block/md0/md/consistency_policy resync Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-03-23md: fix several trivial typos in commentsZhilong Liu
Signed-off-by: Zhilong Liu <zlliu@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-03-22md/raid5: don't test ->writes_pending in raid5_remove_diskNeilBrown
This test on ->writes_pending cannot be safe as the counter can be incremented at any moment and cannot be locked against. Change it to test conf->active_stripes, which at least can be locked against. More changes are still needed. A future patch will change ->writes_pending, and testing it here will be very inconvenient. Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-03-22Revert "md/raid5: limit request size according to implementation limits"NeilBrown
This reverts commit e8d7c33232e5fdfa761c3416539bc5b4acd12db5. Now that raid5 doesn't abuse bi_phys_segments any more, we no longer need to impose these limits. Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-03-22md/raid5: remove over-loading of ->bi_phys_segments.NeilBrown
When a read request, which bypassed the cache, fails, we need to retry it through the cache. This involves attaching it to a sequence of stripe_heads, and it may not be possible to get all the stripe_heads we need at once. We do what we can, and record how far we got in ->bi_phys_segments so we can pick up again later. There is only ever one bio which may have a non-zero offset stored in ->bi_phys_segments, the one that is either active in the single thread which calls retry_aligned_read(), or is in conf->retry_read_aligned waiting for retry_aligned_read() to be called again. So we only need to store one offset value. This can be in a local variable passed between remove_bio_from_retry() and retry_aligned_read(), or in the r5conf structure next to the ->retry_read_aligned pointer. Storing it there allows the last usage of ->bi_phys_segments to be removed from md/raid5.c. Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-03-22md/raid5: use bio_inc_remaining() instead of repurposing bi_phys_segments as ↵NeilBrown
a counter md/raid5 needs to keep track of how many stripe_heads are processing a bio so that it can delay calling bio_endio() until all stripe_heads have completed. It currently uses 16 bits of ->bi_phys_segments for this purpose. 16 bits is only enough for 256M requests, and it is possible for a single bio to be larger than this, which causes problems. Also, the bio struct contains a larger counter, __bi_remaining, which has a purpose very similar to the purpose of our counter. So stop using ->bi_phys_segments, and instead use __bi_remaining. This means we don't need to initialize the counter, as our caller initializes it to '1'. It also means we can call bio_endio() directly as it tests this counter internally. Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-03-22md/raid5: call bio_endio() directly rather than queueing for later.NeilBrown
We currently gather bios that need to be returned into a bio_list and call bio_endio() on them all together. The original reason for this was to avoid making the calls while holding a spinlock. Locking has changed a lot since then, and that reason is no longer valid. So discard return_io() and various return_bi lists, and just call bio_endio() directly as needed. Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-03-22md/raid5: simplfy delaying of writes while metadata is updated.NeilBrown
If a device fails during a write, we must ensure the failure is recorded in the metadata before the completion of the write is acknowleged. Commit c3cce6cda162 ("md/raid5: ensure device failure recorded before write request returns.") added code for this, but it was unnecessarily complicated. We already had similar functionality for handling updates to the bad-block-list, thanks to Commit de393cdea66c ("md: make it easier to wait for bad blocks to be acknowledged.") So revert most of the former commit, and instead avoid collecting completed writes if MD_CHANGE_PENDING is set. raid5d() will then flush the metadata and retry the stripe_head. As this change can leave a stripe_head ready for handling immediately after handle_active_stripes() returns, we change raid5_do_work() to pause when MD_CHANGE_PENDING is set, so that it doesn't spin. We check MD_CHANGE_PENDING *after* analyse_stripe() as it could be set asynchronously. After analyse_stripe(), we have collected stable data about the state of devices, which will be used to make decisions. Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-03-22md/raid5: use md_write_start to count stripes, not biosNeilBrown
We use md_write_start() to increase the count of pending writes, and md_write_end() to decrement the count. We currently count bios submitted to md/raid5. Change it count stripe_heads that a WRITE bio has been attached to. So now, raid5_make_request() calls md_write_start() and then md_write_end() to keep the count elevated during the setup of the request. add_stripe_bio() calls md_write_start() for each stripe_head, and the completion routines always call md_write_end(), instead of only calling it when raid5_dec_bi_active_stripes() returns 0. make_discard_request also calls md_write_start/end(). The parallel between md_write_{start,end} and use of bi_phys_segments can be seen in that: Whenever we set bi_phys_segments to 1, we now call md_write_start. Whenever we increment it on non-read requests with raid5_inc_bi_active_stripes(), we now call md_write_start(). Whenever we decrement bi_phys_segments on non-read requsts with raid5_dec_bi_active_stripes(), we now call md_write_end(). This reduces our dependence on keeping a per-bio count of active stripes in bi_phys_segments. md_write_inc() is added which parallels md_write_start(), but requires that a write has already been started, and is certain never to sleep. This can be used inside a spinlocked region when adding to a write request. Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-03-16raid5-ppl: runtime PPL enabling or disablingArtur Paszkiewicz
Allow writing to 'consistency_policy' attribute when the array is active. Add a new function 'change_consistency_policy' to the md_personality operations structure to handle the change in the personality code. Values "ppl" and "resync" are accepted and turn PPL on and off respectively. When enabling PPL its location and size should first be set using 'ppl_sector' and 'ppl_size' attributes and a valid PPL header should be written at this location on each member device. Enabling or disabling PPL is performed under a suspended array. The raid5_reset_stripe_cache function frees the stripe cache and allocates it again in order to allocate or free the ppl_pages for the stripes in the stripe cache. Signed-off-by: Artur Paszkiewicz <artur.paszkiewicz@intel.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-03-16raid5-ppl: support disk hot add/remove with PPLArtur Paszkiewicz
Add a function to modify the log by removing an rdev when a drive fails or adding when a spare/replacement is activated as a raid member. Removing a disk just clears the child log rdev pointer. No new stripes will be accepted for this child log in ppl_write_stripe() and running io units will be processed without writing PPL to the device. Adding a disk sets the child log rdev pointer and writes an empty PPL header. Signed-off-by: Artur Paszkiewicz <artur.paszkiewicz@intel.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-03-16raid5-ppl: load and recover the logArtur Paszkiewicz
Load the log from each disk when starting the array and recover if the array is dirty. The initial empty PPL is written by mdadm. When loading the log we verify the header checksum and signature. For external metadata arrays the signature is verified in userspace, so here we read it from the header, verifying only if it matches on all disks, and use it later when writing PPL. In addition to the header checksum, each header entry also contains a checksum of its partial parity data. If the header is valid, recovery is performed for each entry until an invalid entry is found. If the array is not degraded and recovery using PPL fully succeeds, there is no need to resync the array because data and parity will be consistent, so in this case resync will be disabled. Due to compatibility with IMSM implementations on other systems, we can't assume that the recovery data block size is always 4K. Writes generated by MD raid5 don't have this issue, but when recovering PPL written in other environments it is possible to have entries with 512-byte sector granularity. The recovery code takes this into account and also the logical sector size of the underlying drives. Signed-off-by: Artur Paszkiewicz <artur.paszkiewicz@intel.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-03-16raid5-ppl: Partial Parity Log write logging implementationArtur Paszkiewicz
Implement the calculation of partial parity for a stripe and PPL write logging functionality. The description of PPL is added to the documentation. More details can be found in the comments in raid5-ppl.c. Attach a page for holding the partial parity data to stripe_head. Allocate it only if mddev has the MD_HAS_PPL flag set. Partial parity is the xor of not modified data chunks of a stripe and is calculated as follows: - reconstruct-write case: xor data from all not updated disks in a stripe - read-modify-write case: xor old data and parity from all updated disks in a stripe Implement it using the async_tx API and integrate into raid_run_ops(). It must be called when we still have access to old data, so do it when STRIPE_OP_BIODRAIN is set, but before ops_run_prexor5(). The result is stored into sh->ppl_page. Partial parity is not meaningful for full stripe write and is not stored in the log or used for recovery, so don't attempt to calculate it when stripe has STRIPE_FULL_WRITE. Put the PPL metadata structures to md_p.h because userspace tools (mdadm) will also need to read/write PPL. Warn about using PPL with enabled disk volatile write-back cache for now. It can be removed once disk cache flushing before writing PPL is implemented. Signed-off-by: Artur Paszkiewicz <artur.paszkiewicz@intel.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-03-16raid5: separate header for log functionsArtur Paszkiewicz
Move raid5-cache declarations from raid5.h to raid5-log.h, add inline wrappers for functions which will be shared with ppl and use them in raid5 core instead of direct calls to raid5-cache. Remove unused parameter from r5c_cache_data(), move two duplicated pr_debug() calls to r5l_init_log(). Signed-off-by: Artur Paszkiewicz <artur.paszkiewicz@intel.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-03-16md/raid5: sort biosShaohua Li
Previous patch (raid5: only dispatch IO from raid5d for harddisk raid) defers IO dispatching. The goal is to create better IO pattern. At that time, we don't sort the deffered IO and hope the block layer can do IO merge and sort. Now the raid5-cache writeback could create large amount of bios. And if we enable muti-thread for stripe handling, we can't control when to dispatch IO to raid disks. In a lot of time, we are dispatching IO which block layer can't do merge effectively. This patch moves further for the IO dispatching defer. We accumulate bios, but we don't dispatch all the bios after a threshold is met. This 'dispatch partial portion of bios' stragety allows bios coming in a large time window are sent to disks together. At the dispatching time, there is large chance the block layer can merge the bios. To make this more effective, we dispatch IO in ascending order. This increases request merge chance and reduces disk seek. Signed-off-by: Shaohua Li <shli@fb.com>
2017-03-16md/raid5: prioritize stripes for writebackShaohua Li
In raid5-cache writeback mode, we have two types of stripes to handle. - stripes which aren't cached yet - stripes which are cached and flushing out to raid disks Upperlayer is more sensistive to latency of the first type of stripes generally. But we only one handle list for all these stripes, where the two types of stripes are mixed together. When reclaim flushes a lot of stripes, the first type of stripes could be noticeably delayed. On the other hand, if the log space is tight, we'd like to handle the second type of stripes faster and free log space. This patch destinguishes the two types stripes. They are added into different handle list. When we try to get a stripe to handl, we prefer the first type of stripes unless log space is tight. This should have no impact for !writeback case. Signed-off-by: Shaohua Li <shli@fb.com>
2017-03-14md/r5cache: fix set_syndrome_sources() for data in cacheSong Liu
Before this patch, device InJournal will be included in prexor (SYNDROME_SRC_WANT_DRAIN) but not in reconstruct (SYNDROME_SRC_WRITTEN). So it will break parity calculation. With srctype == SYNDROME_SRC_WRITTEN, we need include both dev with non-null ->written and dev with R5_InJournal. This fixes logic in 1e6d690(md/r5cache: caching phase of r5cache) Cc: stable@vger.kernel.org (v4.10+) Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-03-09md: move funcs from pers->resize to update_sizeGuoqing Jiang
raid1_resize and raid5_resize should also check the mddev->queue if run underneath dm-raid. And both set_capacity and revalidate_disk are used in pers->resize such as raid1, raid10 and raid5. So move them from personality file to common code. Reviewed-by: NeilBrown <neilb@suse.com> Signed-off-by: Guoqing Jiang <gqjiang@suse.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-03-02sched/headers: Prepare for new header dependencies before moving code to ↵Ingo Molnar
<linux/sched/signal.h> We are going to split <linux/sched/signal.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/signal.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. Include the new header in the files that are going to need it. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-02-24Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/mdLinus Torvalds
Pull md updates from Shaohua Li: "Mainly fixes bugs and improves performance: - Improve scalability for raid1 from Coly - Improve raid5-cache read performance, disk efficiency and IO pattern from Song and me - Fix a race condition of disk hotplug for linear from Coly - A few cleanup patches from Ming and Byungchul - Fix a memory leak from Neil - Fix WRITE SAME IO failure from me - Add doc for raid5-cache from me" * 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md: (23 commits) md/raid1: fix write behind issues introduced by bio_clone_bioset_partial md/raid1: handle flush request correctly md/linear: shutup lockdep warnning md/raid1: fix a use-after-free bug RAID1: avoid unnecessary spin locks in I/O barrier code RAID1: a new I/O barrier implementation to remove resync window md/raid5: Don't reinvent the wheel but use existing llist API md: fast clone bio in bio_clone_mddev() md: remove unnecessary check on mddev md/raid1: use bio_clone_bioset_partial() in case of write behind md: fail if mddev->bio_set can't be created block: introduce bio_clone_bioset_partial() md: disable WRITE SAME if it fails in underlayer disks md/raid5-cache: exclude reclaiming stripes in reclaim check md/raid5-cache: stripe reclaim only counts valid stripes MD: add doc for raid5-cache Documentation: move MD related doc into a separate dir md: ensure md devices are freed before module is unloaded. md/r5cache: improve journal device efficiency md/r5cache: enable chunk_aligned_read with write back cache ...
2017-02-17Merge branch 'for-4.11/next' into for-4.11/linus-mergeJens Axboe
Signed-off-by: Jens Axboe <axboe@fb.com>
2017-02-16md/raid5: Don't reinvent the wheel but use existing llist APIByungchul Park
Although llist provides proper APIs, they are not used. Make them used. Signed-off-by: Byungchul Park <byungchul.park@lge.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-02-15md: fast clone bio in bio_clone_mddev()Ming Lei
Firstly bio_clone_mddev() is used in raid normal I/O and isn't in resync I/O path. Secondly all the direct access to bvec table in raid happens on resync I/O except for write behind of raid1, in which we still use bio_clone() for allocating new bvec table. So this patch replaces bio_clone() with bio_clone_fast() in bio_clone_mddev(). Also kill bio_clone_mddev() and call bio_clone_fast() directly, as suggested by Christoph Hellwig. Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ming Lei <tom.leiming@gmail.com> Signed-off-by: Shaohua Li <shli@fb.com>