summaryrefslogtreecommitdiff
path: root/drivers/lightnvm/pblk-read.c
AgeCommit message (Collapse)Author
2017-07-28lightnvm: pblk: advance bio according to lba indexJavier González
When a lba either hits the cache or corresponds to an empty entry in the L2P table, we need to advance the bio according to the position in which the lba is located. Otherwise, we will copy data in the wrong page, thus causing data corruption for the application. In case of a cache hit, we assumed that bio->bi_iter.bi_idx would contain the correct index, but this is no necessarily true. Instead, use the local bio advance counter and iterator. This guarantees that lbas hitting the cache are copied into the right bv_page. In case of an empty L2P entry, we omitted to advance the bio. In the cases when the same I/O also contains a cache hit, data corresponding to this lba will be copied to the wrong bv_page. Fix this by advancing the bio as we do in the case of a cache hit. Fixes: a4bd217b4326 lightnvm: physical block device (pblk) target Signed-off-by: Javier González <javier@javigon.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-30lightnvm: pblk: verify that cache read is still validJavier González
When a read is directed to the cache, we risk that the lba has been updated during the time we made the L2P table lookup and the time we are actually reading form the cache. We intentionally not hold the L2P lock not to block other threads. While strict ordering is not a guarantee at this level (unless REQ_FLUSH has been previously issued), we have experience that some databases that have recently implemented direct I/O support, issue metadata reads very close to the writes, without issuing a fsync in the middle. An easy way to support them while they is to make an extra effort and check the L2P map right before reading the cache. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-30lightnvm: pblk: use vmalloc for GC data bufferJavier González
For now, we allocate a per I/O buffer for GC data. Since the potential size of the buffer is 256KB and GC is not in the fast path, do this allocation with vmalloc. This puts lets pressure on the memory allocator at no performance cost. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-26lightnvm: pblk: fail gracefully on irrec. errorJavier González
Due to user writes being decoupled from media writes because of the need of an intermediate write buffer, irrecoverable media write errors lead to pblk stalling; user writes fill up the buffer and end up in an infinite retry loop. In order to let user writes fail gracefully, it is necessary for pblk to keep track of its own internal state and prevent further writes from being placed into the write buffer. This patch implements a state machine to keep track of internal errors and, in case of failure, fail further user writes in an standard way. Depending on the type of error, pblk will do its best to persist buffered writes (which are already acknowledged) and close down on a graceful manner. This way, data might be recovered by re-instantiating pblk. Such state machine paves out the way for a state-based FTL log. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-26lightnvm: pblk: set metadata list for all I/OsJavier González
Set a dma area for all I/Os in order to read/write from/to the metadata stored on the per-sector out-of-bound area. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-26lightnvm: pblk: issue multiplane reads if possibleJavier González
If a read request is sequential and its size aligns with a multi-plane page size, use the multi-plane hint to process the I/O in parallel in the controller. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-26lightnvm: pblk: rename read request poolJavier González
Read requests allocate some extra memory to store its per I/O context. Instead of requiring yet another memory pool for other type of requests, generalize this context allocation (and change naming accordingly). Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-26lightnvm: pblk: add debug stat for read cache hitsJavier González
Add a new debug counter to measure cache hits on the read path Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-18lightnvm/pblk-read: use bio_clone_fast()NeilBrown
pblk_submit_read() uses bio_clone_bioset() but doesn't change the io_vec, so bio_clone_fast() is a better choice. It also uses fs_bio_set which is intended for filesystems. Using it in a device driver can deadlock. So allocate a new bioset, and and use bio_clone_fast(). Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Javier González <javier@cnexlabs.com> Tested-by: Javier González <javier@cnexlabs.com> Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-09block: switch bios to blk_status_tChristoph Hellwig
Replace bi_error with a new bi_status to allow for a clear conversion. Note that device mapper overloaded bi_error with a private value, which we'll have to keep arround at least for now and thus propagate to a proper blk_status_t value. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-21lightnvm: don't print a warning for ADDR_EMPTYDan Carpenter
Reading from ADDR_EMPTY is out of bounds. The current code generates a static checker warning because we check for out of bounds "lba" before we check for ADDR_EMPTY, so the second check is always false. It looks like we intended ADDR_EMPTY to be a no-op without printing a warning. Fixes: a4bd217b4326 ("lightnvm: physical block device (pblk) target") Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Reviewed-by: Javier González <javier@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-21lightnvm: potential underflow in pblk_read_rq()Dan Carpenter
This is a static checker fix, and perhaps not a real bug. The static checker thinks that nr_secs could be negative. It would result in zeroing more memory than intended. Anyway, even if it's not a bug, changing this variable to unsigned makes the code easier to audit. Fixes: a4bd217b4326 ("lightnvm: physical block device (pblk) target") Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Reviewed-by: Javier González <javier@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16lightnvm: fix some WARN() messagesDan Carpenter
WARN_ON() takes a condition, not an error message. I slightly tweaked some conditions so hopefully it's more clear. Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16lightnvm: physical block device (pblk) targetJavier González
This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>