summaryrefslogtreecommitdiff
path: root/drivers/lightnvm/pblk-gc.c
AgeCommit message (Collapse)Author
2018-01-05lightnvm: pblk: remove pblk_gc_stopHans Holmberg
pblk_gc_stop just sets pblk->gc->gc_active to zero, ignoring the flush parameter. This is plain confusing, so remove the function and set the gc active flag at the call points instead. Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <m@bjorling.me> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-05lightnvm: pblk: refactor emeta consistency checkHans Holmberg
Currently pblk_recov_get_lba list does two separate things: it checks the consistency of the emeta and extracts the lba list. This patch separates the consistency check to make the code easier to read and to prepare for version checks of the line emeta persistent data format version. Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <m@bjorling.me> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-21lightnvm: Convert timers to use timer_setup()Kees Cook
In preparation for unconditionally passing the struct timer_list pointer to all timer callbacks, switch to using the new timer_setup() and from_timer() to pass the timer pointer explicitly. Cc: Matias Bjorling <mb@lightnvm.io> Cc: linux-block@vger.kernel.org Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-13lightnvm: pblk: avoid being reported as hung on rated GCJavier González
The amount of GC I/O on the write buffer is managed by the rate-limiter, which is calculated as a function of the number of available free blocks. When reaching the stable point, we risk having scheduled more I/Os for GC than are allowed on the write buffer. This would result on the GC semaphore balancing the outstanding read GC I/Os to be reported as "hung", though the behavior is normal. Solve this by allowing to schedule when we detect that the read GC path is not moving forward. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <m@bjorling.me> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-13lightnvm: pblk: cleanup unused and static functionsJavier González
Cleanup up unused and static functions across the whole codebase. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <m@bjorling.me> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-13lightnvm: pblk: gc all lines in the pipeline before exitHans Holmberg
Finish garbage collect of the lines that are in the gc pipeline before exiting. Ensure that all lines already in in the pipeline goes through, from read to write. Do this by keeping track of how many lines are in the pipeline and waiting for that number to reach zero before exiting the gc reader task. Since we're adding a new gc line counter, change the name of inflight_gc to read_inflight_gc to make the distinction clear. Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com> Signed-off-by: Matias Bjørling <m@bjorling.me> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-13lightnvm: pblk: shut down gc gracefully during exitHans Holmberg
Shut down the GC workqueues and tasks in the right order. Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com> Signed-off-by: Matias Bjørling <m@bjorling.me> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-13lightnvm: pblk: start gc if needed during initHans Holmberg
Start GC if needed, directly after init, as we might need to garbage collect in order to make room for user writes. Create a helper function that allows to kick GC without exposing the internals of the GC/rate-limiter interaction. Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com> Signed-off-by: Matias Bjørling <m@bjorling.me> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-13lightnvm: pblk: free full lines during recoveryHans Holmberg
When rebuilding the L2P table, any full lines (lines without any valid sectors) will be identified. If these lines are not freed, we risk not being able to allocate the first data line. This patch refactors the part of GC that frees empty lines into a separate function and adds a call to this after the L2P table has been rebuilt. Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com> Signed-off-by: Matias Bjørling <m@bjorling.me> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-13lightnvm: pblk: prevent gc kicks when gc is not operationalHans Holmberg
GC can be kicked after it has been shut down when closing the last line during exit, resulting in accesses to freed structures. Make sure that GC is not triggered while it is not operational. Also make sure that GC won't be re-activated during exit when running on another processor by using timer_del_sync. Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com> Signed-off-by: Matias Bjørling <m@bjorling.me> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-13lightnvm: pblk: refactor read path on GCJavier González
Simplify the part of the garbage collector where data is read from the line being recycled and moved into an internal queue before being copied to the memory buffer. This allows to get rid of a dedicated function, which introduces an unnecessary dependency on the code. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <m@bjorling.me> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-13lightnvm: pblk: simplify data validity check on GCJavier González
When a line is selected for recycling by the garbage collector (GC), the line state changes and the invalid bitmap is frozen, preventing invalidations from happening. Throughout the GC, the L2P map is checked to verify that not data being recycled has been updated. The last check is done before the new map is being stored on the L2P table. Though this algorithm works, it requires a number of corner cases to be checked each time the L2P table is being updated. This complicates readability and is error prone in case that the recycling algorithm is modified. Instead, this patch makes the invalid bitmap accessible even when the line is being recycled. When recycled data is being remapped, it is enough to check the invalid bitmap for the line before updating the L2P table. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <m@bjorling.me> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-13lightnvm: pblk: use constant for GC max inflightJavier González
Use a constant to set the maximum number of inflight GC requests allowed. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <m@bjorling.me> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-13lightnvm: pblk: simplify work_queue mempoolJavier González
In pblk, we have a mempool to allocate a generic structure that we pass along workqueues. This is heavily used in the GC path in order to have enough inflight reads and fully utilize the GC bandwidth. However, the current GC path copies data to the host memory and puts it back into the write buffer. This requires a vmalloc allocation for the data and a memory copy. Thus, guaranteeing the allocation by using a mempool for the structure in itself does not give us much. Until we implement support for vector copy to avoid moving data through the host, just allocate the workqueue structure using kmalloc. This allows us to have a much smaller mempool. Reported-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <m@bjorling.me> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-30lightnvm: pblk: use vmalloc for GC data bufferJavier González
For now, we allocate a per I/O buffer for GC data. Since the potential size of the buffer is 256KB and GC is not in the fast path, do this allocation with vmalloc. This puts lets pressure on the memory allocator at no performance cost. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-30lightnvm: pblk: fix bad le64 assignationsJavier González
Use the right types and conversions on le64 variables. Reported by sparse. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-26lightnvm: pblk: redesign GC algorithmJavier González
At the moment, in order to get enough read parallelism, we have recycled several lines at the same time. This approach has proven not to work well when reaching capacity, since we end up mixing valid data from all lines, thus not maintaining a sustainable free/recycled line ratio. The new design, relies on a two level workqueue mechanism. In the first level, we read the metadata for a number of lines based on the GC list they reside on (this is governed by the number of valid sectors in each line). In the second level, we recycle a single line at a time. Here, we issue reads in parallel, while a single GC write thread places data in the write buffer. This design allows to (i) only move data from one line at a time, thus maintaining a sane free/recycled ration and (ii) maintain the GC writer busy with recycled data. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-26lightnvm: pblk: choose optimal victim GC lineJavier González
At the moment, we separate the closed lines on three different list based on their number of valid sectors. GC recycles lines from each list based on capacity. Lines from each list are taken in a FIFO fashion. Since the number of lines is limited (it corresponds to the number of blocks in a LUN, which is somewhere between 1000-2000), we can afford scanning the lists to choose the optimal line to be recycled. This helps specially in lines with a high number of valid sectors. If the number of blocks per LUN increases, we will consider a more efficient policy. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-06-26lightnvm: pblk: sched. metadata on write threadJavier González
At the moment, line metadata is persisted on a separate work queue, that is kicked each time that a line is closed. The assumption when designing this was that freeing the write thread from creating a new write request was better than the potential impact of writes colliding on the media (user I/O and metadata I/O). Experimentation has proven that this assumption is wrong; collision can cause up to 25% of bandwidth and introduce long tail latencies on the write thread, which potentially cause user write threads to spend more time spinning to get a free entry on the write buffer. This patch moves the metadata logic to the write thread. When a line is closed, remaining metadata is written in memory and is placed on a metadata queue. The write thread then takes the metadata corresponding to the previous line, creates the write request and schedules it to minimize collisions on the media. Using this approach, we see that we can saturate the media's bandwidth, which helps reducing both write latencies and the spinning time for user writer threads. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-04-23lightnvm: pblk: fix erase counters on error failJavier González
When block erases fail, these blocks are marked bad. The number of valid blocks in the line was not updated, which could cause an infinite loop on the erase path. Fix this atomic counter and, in order to avoid taking an irq lock on the interrupt context, make the erase counters atomic too. Also, in the case that a significant number of blocks become bad in a line, the result is the double shared metadata buffer (emeta) to stop the pipeline until all metadata is flushed to the media. Increase the number of metadata lines from 2 to 4 to avoid this case. Fixes: a4bd217b4326 "lightnvm: physical block device (pblk) target" Signed-off-by: Javier González <javier@cnexlabs.com> Reviewed-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16lightnvm: pblk-gc: fix an error pointer dereference in initDan Carpenter
These labels are reversed so we could end up dereferencing an error pointer or leaking. Fixes: 7f347ba6bb3a ("lightnvm: physical block device (pblk) target") Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-16lightnvm: physical block device (pblk) targetJavier González
This patch introduces pblk, a host-side translation layer for Open-Channel SSDs to expose them like block devices. The translation layer allows data placement decisions, and I/O scheduling to be managed by the host, enabling users to optimize the SSD for their specific workloads. An open-channel SSD has a set of LUNs (parallel units) and a collection of blocks. Each block can be read in any order, but writes must be sequential. Writes may also fail, and if a block requires it, must also be reset before new writes can be applied. To manage the constraints, pblk maintains a logical to physical address (L2P) table, write cache, garbage collection logic, recovery scheme, and logic to rate-limit user I/Os versus garbage collection I/Os. The L2P table is fully-associative and manages sectors at a 4KB granularity. Pblk stores the L2P table in two places, in the out-of-band area of the media and on the last page of a line. In the cause of a power failure, pblk will perform a scan to recover the L2P table. The user data is organized into lines. A line is data striped across blocks and LUNs. The lines enable the host to reduce the amount of metadata to maintain besides the user data and makes it easier to implement RAID or erasure coding in the future. pblk implements multi-tenant support and can be instantiated multiple times on the same drive. Each instance owns a portion of the SSD - both regarding I/O bandwidth and capacity - providing I/O isolation for each case. Finally, pblk also exposes a sysfs interface that allows user-space to peek into the internals of pblk. The interface is available at /dev/block/*/pblk/ where * is the block device name exposed. This work also contains contributions from: Matias Bjørling <matias@cnexlabs.com> Simon A. F. Lund <slund@cnexlabs.com> Young Tack Jin <youngtack.jin@gmail.com> Huaicheng Li <huaicheng@cs.uchicago.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <matias@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@fb.com>