Age | Commit message (Collapse) | Author |
|
This controller appeared on Loongson-3 family of chips to receive
interrupts from PCH PIC.
It is a I8259 with optimized interrupt polling flow. We can poll
interrupt number from HT vector directly but still have to follow
standard I8259 routines to mask, unmask and EOI.
Signed-off-by: Jiaxun Yang <jiaxun.yang@flygoat.com>
Co-developed-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
|
|
This controller appeared on Loongson family of chips as the primary
package interrupt source.
Signed-off-by: Jiaxun Yang <jiaxun.yang@flygoat.com>
Co-developed-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
|
|
The Interrupt Multiplexer (INTMUX) expands the number of peripherals
that can interrupt the core:
* The INTMUX has 8 channels that are assigned to 8 NVIC interrupt slots.
* Each INTMUX channel can receive up to 32 interrupt sources and has 1
interrupt output.
* The INTMUX routes the interrupt sources to the interrupt outputs.
Signed-off-by: Shengjiu Wang <shengjiu.wang@nxp.com>
Signed-off-by: Joakim Zhang <qiangqing.zhang@nxp.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200117060653.27485-3-qiangqing.zhang@nxp.com
|
|
This patch is written to clean up dependency of ARCH_EXYNOS
Not all exynos device have IRQ_COMBINER, especially aarch64 EXYNOS
but it is built for all exynos devices.
Thus add the config for EXYNOS_IRQ_COMBINER
remove direct dependency between ARCH_EXYNOS and exynos-combiner.c
and only selected on the aarch32 devices
Signed-off-by: Hyunki Koo <hyunki00.koo@samsung.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Krzysztof Kozlowski <krzk@kernel.org>
Link: https://lore.kernel.org/r/20191224211108.7128-1-hyunki00.koo@gmail.com
|
|
The Aspeed SOCs provide some interrupts through the System Control
Unit registers. Add an interrupt controller that provides these
interrupts to the system.
Signed-off-by: Eddie James <eajames@linux.ibm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Andrew Jeffery <andrew@aj.id.au>
Link: https://lore.kernel.org/r/1579123790-6894-3-git-send-email-eajames@linux.ibm.com
|
|
The LS1021A allows inverting the polarity of six interrupt lines
IRQ[0:5] via the scfg_intpcr register, effectively allowing
IRQ_TYPE_LEVEL_LOW and IRQ_TYPE_EDGE_FALLING for those. We just need to
check the type, set the relevant bit in INTPCR accordingly, and fixup
the type argument before calling the GIC's irq_set_type.
In fact, the power-on-reset value of the INTPCR register on the LS1021A
is so that all six lines have their polarity inverted. Hence any
hardware connected to those lines is unusable without this: If the line
is indeed active low, the generic GIC code will reject an irq spec with
IRQ_TYPE_LEVEL_LOW, while if the line is active high, we must obviously
disable the polarity inversion (writing 0 to the relevant bit) before
unmasking the interrupt.
Some other Layerscape SOCs (LS1043A, LS1046A) have a similar feature,
just with a different number of external interrupt lines (and a
different POR value for the INTPCR register). This driver should be
prepared for supporting those by properly filling out the device tree
node. I have the reference manuals for all three boards, but I've only
tested the driver on an LS1021A.
Unfortunately, the Kconfig symbol ARCH_LAYERSCAPE only exists on
arm64, so do as is done for irq-ls-scfg-msi.c: introduce a new symbol
which is set when either ARCH_LAYERSCAPE or SOC_LS1021A is set.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20191107122115.6244-3-linux@rasmusvillemoes.dk
|
|
This driver handles the interrupt controller built in the Timer/Counter
Unit (TCU) of the JZ47xx SoCs from Ingenic.
Signed-off-by: Paul Cercueil <paul@crapouillou.net>
Tested-by: Mathieu Malaterre <malat@debian.org>
Tested-by: Artur Rojek <contact@artur-rojek.eu>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Lee Jones <lee.jones@linaro.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Michael Turquette <mturquette@baylibre.com>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: Jason Cooper <jason@lakedaemon.net>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: devicetree@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-doc@vger.kernel.org
Cc: linux-mips@vger.kernel.org
Cc: linux-clk@vger.kernel.org
Cc: od@zcrc.me
|
|
Controller Driver
The Amazon's Annapurna Labs Fabric Interrupt Controller has 32 inputs.
A FIC (Fabric Interrupt Controller) may be cascaded into another FIC or
directly to the main CPU Interrupt Controller (e.g. GIC).
Signed-off-by: Talel Shenhar <talel@amazon.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Add a driver for the Renesas RZ/A1 Interrupt Controller.
This supports using up to 8 external interrupts on RZ/A1, with
configurable sense select.
NMI edge select is not yet supported.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Tested-by: Chris Brandt <chris.brandt@renesas.com>
Reviewed-by: Simon Horman <horms+renesas@verge.net.au>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull IRQ chip updates from Ingo Molnar:
"A late irqchips update:
- New TI INTR/INTA set of drivers
- Rewrite of the stm32mp1-exti driver as a platform driver
- Update the IOMMU MSI mapping API to be RT friendly
- A number of cleanups and other low impact fixes"
* 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits)
iommu/dma-iommu: Remove iommu_dma_map_msi_msg()
irqchip/gic-v3-mbi: Don't map the MSI page in mbi_compose_m{b, s}i_msg()
irqchip/ls-scfg-msi: Don't map the MSI page in ls_scfg_msi_compose_msg()
irqchip/gic-v3-its: Don't map the MSI page in its_irq_compose_msi_msg()
irqchip/gicv2m: Don't map the MSI page in gicv2m_compose_msi_msg()
iommu/dma-iommu: Split iommu_dma_map_msi_msg() in two parts
genirq/msi: Add a new field in msi_desc to store an IOMMU cookie
arm64: arch_k3: Enable interrupt controller drivers
irqchip/ti-sci-inta: Add msi domain support
soc: ti: Add MSI domain bus support for Interrupt Aggregator
irqchip/ti-sci-inta: Add support for Interrupt Aggregator driver
dt-bindings: irqchip: Introduce TISCI Interrupt Aggregator bindings
irqchip/ti-sci-intr: Add support for Interrupt Router driver
dt-bindings: irqchip: Introduce TISCI Interrupt router bindings
gpio: thunderx: Use the default parent apis for {request,release}_resources
genirq: Introduce irq_chip_{request,release}_resource_parent() apis
firmware: ti_sci: Add helper apis to manage resources
firmware: ti_sci: Add RM mapping table for am654
firmware: ti_sci: Add support for IRQ management
firmware: ti_sci: Add support for RM core ops
...
|
|
Texas Instruments' K3 generation SoCs has an IP Interrupt Aggregator
which is an interrupt controller that does the following:
- Converts events to interrupts that can be understood by
an interrupt router.
- Allows for multiplexing of events to interrupts.
Configuration of the interrupt aggregator registers can only be done by
a system co-processor and the driver needs to send a message to this
co processor over TISCI protocol. Add the required infrastructure to
allow the allocation and routing of these events.
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Texas Instruments' K3 generation SoCs has an IP Interrupt Router
that does allows for redirection of input interrupts to host
interrupt controller. Interrupt Router inputs are either from a
peripheral or from an Interrupt Aggregator which is another
interrupt controller.
Configuration of the interrupt router registers can only be done by
a system co-processor and the driver needs to send a message to this
co processor over TISCI protocol.
Add support for Interrupt Router driver over TISCI protocol.
Signed-off-by: Lokesh Vutla <lokeshvutla@ti.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
The IXP4xx (arch/arm/mach-ixp4xx) is an old Intel XScale
platform that has very wide deployment and use.
As part of modernizing the platform, we need to implement a
proper irqchip in the irqchip subsystem.
The IXP4xx irqchip is tightly jotted together with the GPIO
controller, and whereas in the past we would deal with this
complex logic by adding necessarily different code, we can
nowadays modernize it using a hierarchical irqchip.
The actual IXP4 irqchip is a simple active low level IRQ
controller, whereas the GPIO functionality resides in a
different memory area and adds edge trigger support for
the interrupts.
The interrupts from GPIO lines 0..12 are 1:1 mapped to
a fixed set of hardware IRQs on this IRQchip, so we
expect the child GPIO interrupt controller to go in and
allocate descriptors for these interrupts.
For the other interrupts, as we do not yet have DT
support for this platform, we create a linear irqdomain
and then go in and allocate the IRQs that the legacy
boards use. This code will be removed on the DT probe
path when we add DT support to the platform.
We add some translation code for supporting DT
translations for the fwnodes, but we leave most of that
for later.
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Jason Cooper <jason@lakedaemon.net>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
|
|
Pull ARM SoC late updates from Arnd Bergmann:
"Here are two branches that came relatively late during the linux-5.0
development cycle and have dependencies on the other branches:
- On the TI OMAP platform, the CPSW Ethernet PHY mode selection
driver is being replaced, this puts the final pieces in place
- On the DaVinci platform, the interrupt handling code in arch/arm
gets moved into a regular device driver in drivers/irqchip.
Since they both had some time in linux-next after the 5.0-rc8 release,
I'm sending them along with the other updates"
* tag 'armsoc-late' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc: (38 commits)
net: ethernet: ti: cpsw: deprecate cpsw-phy-sel driver
ARM: davinci: remove intc related fields from davinci_soc_info
irqchip: davinci-cp-intc: move the driver to drivers/irqchip
ARM: davinci: cp-intc: remove redundant comments
ARM: davinci: cp-intc: drop GPL license boilerplate
ARM: davinci: cp-intc: use readl/writel_relaxed()
ARM: davinci: cp-intc: unify error handling
ARM: davinci: cp-intc: improve coding style
ARM: davinci: cp-intc: request the memory region before remapping it
ARM: davinci: cp-intc: use the new-style config structure
ARM: davinci: cp-intc: convert all hex numbers to lowercase
ARM: davinci: cp-intc: use a common prefix for all symbols
ARM: davinci: cp-intc: add the new config structures for da8xx SoCs
irqchip: davinci-cp-intc: add a new config structure
ARM: davinci: cp-intc: add a wrapper around cp_intc_init()
ARM: davinci: cp-intc: remove cp_intc.h
irqchip: davinci-aintc: move the driver to drivers/irqchip
ARM: davinci: aintc: remove unnecessary includes
ARM: davinci: aintc: remove the timer-specific irq_set_handler()
ARM: davinci: aintc: request memory region before remapping it
...
|
|
The cp-intc driver has now been cleaned up. Move it to drivers/irqchip
where it belongs.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Reviewed-by: David Lechner <david@lechnology.com>
Signed-off-by: Sekhar Nori <nsekhar@ti.com>
|
|
The aintc driver has now been cleaned up. Move it to drivers/irqchip
where it belongs. There's no device-tree support for any dm* board so
there's no IRQCHIP_OF_DECLARE() - there's only the exported init
function called from machine code.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: David Lechner <david@lechnology.com>
Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Signed-off-by: Sekhar Nori <nsekhar@ti.com>
|
|
This controller appeared on Loongson-1 family MCUs
including Loongson-1B and Loongson-1C.
Signed-off-by: Jiaxun Yang <jiaxun.yang@flygoat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
The irqsteer block is a interrupt multiplexer/remapper found on the
i.MX8 line of SoCs.
Signed-off-by: Fugang Duan <fugang.duan@nxp.com>
Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
The Cirrus Logic Madera codecs (Cirrus Logic CS47L35/85/90/91 and WM1840)
are highly complex devices containing up to 7 programmable DSPs and many
other internal sources of interrupts plus a number of GPIOs that can be
used as interrupt inputs. The large number (>150) of internal interrupt
sources are managed by an on-board interrupt controller.
This driver provides the handling for the interrupt controller. As the
codec is accessed via regmap, we can make use of the generic IRQ
functionality from regmap to do most of the work. Only around half of
the possible interrupt source are currently of interest from the driver
so only this subset is defined. Others can be added in future if needed.
The KConfig options are not user-configurable because this driver is
mandatory so is automatically included when the parent MFD driver is
selected.
Signed-off-by: Richard Fitzgerald <rf@opensource.cirrus.com>
Signed-off-by: Charles Keepax <ckeepax@opensource.cirrus.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Add interrupt driver for RDA Micro RDA8810PL SoC.
Signed-off-by: Andreas Färber <afaerber@suse.de>
Signed-off-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Pull C-SKY architecture port from Guo Ren:
"This contains the Linux port for C-SKY(csky) based on linux-4.19
Release, which has been through 10 rounds of review on mailing list.
More information:
http://en.c-sky.com
The development repo:
https://github.com/c-sky/csky-linux
ABI Documentation:
https://github.com/c-sky/csky-doc
Here is the pre-built cross compiler for fast test from our CI:
https://gitlab.com/c-sky/buildroot/-/jobs/101608095/artifacts/file/output/images/csky_toolchain_qemu_csky_ck807f_4.18_glibc_defconfig_482b221e52908be1c9b2ccb444255e1562bb7025.tar.xz
We use buildroot as our CI-test enviornment. "LTP, Lmbench ..." will
be tested for every commit. See here for more details:
https://gitlab.com/c-sky/buildroot/pipelines
We'll continouslly improve csky subsystem in future"
Arnd acks, and adds the following notes:
"I did a thorough review of the ABI, which as usual mainly consists of
spotting any files that don't use the asm-generic ABI itself, and
having it changed to it matches exactly what we do on other new
architectures.
I also looked at every other patch and commented on maybe half of them
where I saw something that did not quite seem right. Others have
reviewed specific patches in greater depth. I'm sure that one could
fine more of the minor details, but as long as they are not ABI
relevant, they can be fixed later.
The only patch that is part of the ABI and that nobody reviewed is the
signal handling. This is one of the areas I never worked on in much
detail. I did not see anything wrong with it, but I also don't know
what the problems with the other architectures are here, and we seem
to be hitting issues occasionally, and we never managed to generalize
this enough for new architectures to have a trivial implementation.
I was originally hoping that we could have the 64-bit time_t
interfaces ready in time to completely drop the 32-bit ones, but that
did not happen. We might still remove them in the next merge window
depending on whether the libc upstream people prefer to keep them or
not.
One more general comment: I think this may well be the last new CPU
architecture we ever add to the kernel. Both nds32 and c-sky are made
by companies that also work on risc-v, and generally speaking risc-v
seems to be killing off any of the minor licensable instruction set
projects, just like ARM has mostly killed off the custom
vendor-specific instruction sets already.
If we add another architecture in the future, it may instead be
something like the LLVM bitcode or WebAssembly, who knows?"
To which Geert Uytterhoeven pipes in about another architecture still in
the pipeline: Kalray MPPA.
* tag 'csky-for-linus-4.20' of https://github.com/c-sky/csky-linux: (24 commits)
dt-bindings: interrupt-controller: C-SKY APB intc
irqchip: add C-SKY APB bus interrupt controller
dt-bindings: interrupt-controller: C-SKY SMP intc
irqchip: add C-SKY SMP interrupt controller
MAINTAINERS: Add csky
dt-bindings: Add vendor prefix for csky
dt-bindings: csky CPU Bindings
csky: Misc headers
csky: SMP support
csky: Debug and Ptrace GDB
csky: User access
csky: Library functions
csky: ELF and module probe
csky: Atomic operations
csky: IRQ handling
csky: VDSO and rt_sigreturn
csky: Process management and Signal
csky: MMU and page table management
csky: Cache and TLB routines
csky: System Call
...
|
|
The driver is for C-SKY APB bus interrupt controller. It's a simple
interrupt controller which use pending reg to detect the irq and use
enable/disable reg to mask/unmask interrupt sources.
A lot of SOCs based on C-SKY CPU use the interrupt controller as root
controller.
Signed-off-by: Guo Ren <ren_guo@c-sky.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
|
|
The driver is for C-SKY SMP interrupt controller. It support 16
soft-irqs, 16 private-irqs, and 992 max external-irqs, a total of
1024 interrupts.
C-SKY CPU 807/810/860 SMP/non-SMP could use it.
Signed-off-by: Guo Ren <ren_guo@c-sky.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
This is a cascaded interrupt controller in the AP806 GIC that collapses
SEIs (System Error Interrupt) coming from the AP and the CPs (through
the ICU).
The SEI handles up to 64 interrupts. The first 21 interrupts are wired
from the AP. The next 43 interrupts are from the CPs and are triggered
through MSI messages. To handle this complexity, the driver has to
declare to the upper layer: one IRQ domain for the wired interrupts,
one IRQ domain for the MSIs; and acts as a MSI controller ('parent')
by declaring an MSI domain.
Suggested-by: Haim Boot <hayim@marvell.com>
Suggested-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Add a driver for the SiFive implementation of the RISC-V Platform Level
Interrupt Controller (PLIC). The PLIC connects global interrupt sources
to the local interrupt controller on each hart.
This driver is based on the driver in the RISC-V tree from Palmer Dabbelt,
but has been almost entirely rewritten since, and includes many fixes
from Atish Patra.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Atish Patra <atish.patra@wdc.com>
[Binding update by Palmer]
Signed-off-by: Palmer Dabbelt <palmer@sifive.com>
|
|
GICv3 offers the possibility to signal SPIs using a pair of doorbells
(SETPI, CLRSPI) under the name of Message Based Interrupts (MBI).
They can be used as either traditional (edge) MSIs, or the more exotic
level-triggered flavour.
Let's implement support for platform MSI, which is the original intent
for this feature.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Rob Herring <robh@kernel.org>
Cc: Jason Cooper <jason@lakedaemon.net>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Cc: Thomas Petazzoni <thomas.petazzoni@bootlin.com>
Cc: Miquel Raynal <miquel.raynal@bootlin.com>
Link: https://lkml.kernel.org/r/20180508121438.11301-8-marc.zyngier@arm.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging
Pull staging/IIO updates from Greg KH:
"Here is the big set of Staging/IIO driver patches for 4.17-rc1.
It is a lot, over 500 changes, but not huge by previous kernel release
standards. We deleted more lines than we added again (27k added vs.
91k remvoed), thanks to finally being able to delete the IRDA drivers
and networking code.
We also deleted the ccree crypto driver, but that's coming back in
through the crypto tree to you, in a much cleaned-up form.
Added this round is at lot of "mt7621" device support, which is for an
embedded device that Neil Brown cares about, and of course a handful
of new IIO drivers as well.
And finally, the fsl-mc core code moved out of the staging tree to the
"real" part of the kernel, which is nice to see happen as well.
Full details are in the shortlog, which has all of the tiny cleanup
patches described.
All of these have been in linux-next for a while with no reported
issues"
* tag 'staging-4.17-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging: (579 commits)
staging: rtl8723bs: Remove yield call, replace with cond_resched()
staging: rtl8723bs: Replace yield() call with cond_resched()
staging: rtl8723bs: Remove unecessary newlines from 'odm.h'.
staging: rtl8723bs: Rework 'struct _ODM_Phy_Status_Info_' coding style.
staging: rtl8723bs: Rework 'struct _ODM_Per_Pkt_Info_' coding style.
staging: rtl8723bs: Replace NULL pointer comparison with '!'.
staging: rtl8723bs: Factor out rtl8723bs_recv_tasklet() sections.
staging: rtl8723bs: Fix function signature that goes over 80 characters.
staging: rtl8723bs: Fix lines too long in update_recvframe_attrib().
staging: rtl8723bs: Remove unnecessary blank lines in 'rtl8723bs_recv.c'.
staging: rtl8723bs: Change camel case to snake case in 'rtl8723bs_recv.c'.
staging: rtl8723bs: Add missing braces in else statement.
staging: rtl8723bs: Add spaces around ternary operators.
staging: rtl8723bs: Fix lines with trailing open parentheses.
staging: rtl8723bs: Remove unnecessary length #define's.
staging: rtl8723bs: Fix IEEE80211 authentication algorithm constants.
staging: rtl8723bs: Fix alignment in rtw_wx_set_auth().
staging: rtl8723bs: Remove braces from single statement conditionals.
staging: rtl8723bs: Remove unecessary braces from switch statement.
staging: rtl8723bs: Fix newlines in rtw_wx_set_auth().
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull irq updates from Thomas Gleixner:
"The usual pile of boring changes:
- Consolidate tasklet functions to share code instead of duplicating
it
- The first step for making the low level entry handler management on
multi-platform kernels generic
- A new sysfs file which allows to retrieve the wakeup state of
interrupts.
- Ensure that the interrupt thread follows the effective affinity and
not the programmed affinity to avoid cross core wakeups.
- Two new interrupt controller drivers (Microsemi Ocelot and Qualcomm
PDC)
- Fix the wakeup path clock handling for Reneasas interrupt chips.
- Rework the boot time register reset for ARM GIC-V2/3
- Better suspend/resume support for ARM GIV-V3/ITS
- Add missing locking to the ARM GIC set_type() callback
- Small fixes for the irq simulator code
- SPDX identifiers for the irq core code and removal of boiler plate
- Small cleanups all over the place"
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
openrisc: Set CONFIG_MULTI_IRQ_HANDLER
arm64: Set CONFIG_MULTI_IRQ_HANDLER
genirq: Make GENERIC_IRQ_MULTI_HANDLER depend on !MULTI_IRQ_HANDLER
irqchip/gic: Take lock when updating irq type
irqchip/gic: Update supports_deactivate static key to modern api
irqchip/gic-v3: Ensure GICR_CTLR.EnableLPI=0 is observed before enabling
irqchip: Add a driver for the Microsemi Ocelot controller
dt-bindings: interrupt-controller: Add binding for the Microsemi Ocelot interrupt controller
irqchip/gic-v3: Probe for SCR_EL3 being clear before resetting AP0Rn
irqchip/gic-v3: Don't try to reset AP0Rn
irqchip/gic-v3: Do not check trigger configuration of partitionned LPIs
genirq: Remove license boilerplate/references
genirq: Add missing SPDX identifiers
genirq/matrix: Cleanup SPDX identifier
genirq: Cleanup top of file comments
genirq: Pass desc to __irq_free instead of irq number
irqchip/gic-v3: Loudly complain about the use of IRQ_TYPE_NONE
irqchip/gic: Loudly complain about the use of IRQ_TYPE_NONE
RISC-V: Move to the new GENERIC_IRQ_MULTI_HANDLER handler
genirq: Add CONFIG_GENERIC_IRQ_MULTI_HANDLER
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pul removal of obsolete architecture ports from Arnd Bergmann:
"This removes the entire architecture code for blackfin, cris, frv,
m32r, metag, mn10300, score, and tile, including the associated device
drivers.
I have been working with the (former) maintainers for each one to
ensure that my interpretation was right and the code is definitely
unused in mainline kernels. Many had fond memories of working on the
respective ports to start with and getting them included in upstream,
but also saw no point in keeping the port alive without any users.
In the end, it seems that while the eight architectures are extremely
different, they all suffered the same fate: There was one company in
charge of an SoC line, a CPU microarchitecture and a software
ecosystem, which was more costly than licensing newer off-the-shelf
CPU cores from a third party (typically ARM, MIPS, or RISC-V). It
seems that all the SoC product lines are still around, but have not
used the custom CPU architectures for several years at this point. In
contrast, CPU instruction sets that remain popular and have actively
maintained kernel ports tend to all be used across multiple licensees.
[ See the new nds32 port merged in the previous commit for the next
generation of "one company in charge of an SoC line, a CPU
microarchitecture and a software ecosystem" - Linus ]
The removal came out of a discussion that is now documented at
https://lwn.net/Articles/748074/. Unlike the original plans, I'm not
marking any ports as deprecated but remove them all at once after I
made sure that they are all unused. Some architectures (notably tile,
mn10300, and blackfin) are still being shipped in products with old
kernels, but those products will never be updated to newer kernel
releases.
After this series, we still have a few architectures without mainline
gcc support:
- unicore32 and hexagon both have very outdated gcc releases, but the
maintainers promised to work on providing something newer. At least
in case of hexagon, this will only be llvm, not gcc.
- openrisc, risc-v and nds32 are still in the process of finishing
their support or getting it added to mainline gcc in the first
place. They all have patched gcc-7.3 ports that work to some
degree, but complete upstream support won't happen before gcc-8.1.
Csky posted their first kernel patch set last week, their situation
will be similar
[ Palmer Dabbelt points out that RISC-V support is in mainline gcc
since gcc-7, although gcc-7.3.0 is the recommended minimum - Linus ]"
This really says it all:
2498 files changed, 95 insertions(+), 467668 deletions(-)
* tag 'arch-removal' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic: (74 commits)
MAINTAINERS: UNICORE32: Change email account
staging: iio: remove iio-trig-bfin-timer driver
tty: hvc: remove tile driver
tty: remove bfin_jtag_comm and hvc_bfin_jtag drivers
serial: remove tile uart driver
serial: remove m32r_sio driver
serial: remove blackfin drivers
serial: remove cris/etrax uart drivers
usb: Remove Blackfin references in USB support
usb: isp1362: remove blackfin arch glue
usb: musb: remove blackfin port
usb: host: remove tilegx platform glue
pwm: remove pwm-bfin driver
i2c: remove bfin-twi driver
spi: remove blackfin related host drivers
watchdog: remove bfin_wdt driver
can: remove bfin_can driver
mmc: remove bfin_sdh driver
input: misc: remove blackfin rotary driver
input: keyboard: remove bf54x driver
...
|
|
The Microsemi Ocelot SoC has a pretty simple IRQ controller in its ICPU
block. Add a driver for it.
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
The Power Domain Controller (PDC) on QTI SoCs like SDM845 houses an
interrupt controller along with other domain control functions to handle
interrupt related functions like handle falling edge or active low which
are not detected at the GIC and handle wakeup interrupts.
The interrupt controller is on an always-on domain for the purpose of
waking up the processor. Only a subset of the processor's interrupts are
routed through the PDC to the GIC. The PDC powers on the processors'
domain, when in low power mode and replays pending interrupts so the GIC
may wake up the processor.
Signed-off-by: Archana Sathyakumar <asathyak@codeaurora.org>
Signed-off-by: Lina Iyer <ilina@codeaurora.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Now that arch/metag/ has been removed, remove the two metag irqchip
drivers. They are of no value without the architecture code.
- irq-metag: Meta internal (HWSTATMETA) interrupt code.
- irq-metag-ext: Meta External interrupt code.
Signed-off-by: James Hogan <jhogan@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Jason Cooper <jason@lakedaemon.net>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: linux-metag@vger.kernel.org
|
|
Now that the fsl-mc bus core infrastructure is out of staging, the
remaining irqchip glue code used (irq-gic-v3-its-fsl-mc-msi.c) goes
to drivers/irqchip.
Create new Kconfig option for irqchip code that depends on
FSL_MC_BUS and ARM_GIC_V3_ITS. This ensures irqchip code only
gets built on ARM64 platforms. We can now remove #ifdef
GENERIC_MSI_DOMAIN_OPS as it was only needed for x86.
Signed-off-by: Stuart Yoder <stuyoder@gmail.com>
[rebased, add dpaa2_eth and dpio #include updates]
Signed-off-by: Laurentiu Tudor <laurentiu.tudor@nxp.com>
[rebased, split irqchip to separate patch]
Signed-off-by: Bogdan Purcareata <bogdan.purcareata@nxp.com>
[add Kconfig dependency on ARM_GIC_V3_ITS]
Signed-off-by: Ioana Radulescu <ruxandra.radulescu@nxp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Jason Cooper <jason@lakedaemon.net>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This patch adds the Andestech Internal Vector Interrupt Controller
driver. You can find the spec here. Ch4.9 of AndeStar SPA V3 Manual.
http://www.andestech.com/product.php?cls=9
Signed-off-by: Rick Chen <rick@andestech.com>
Signed-off-by: Greentime Hu <greentime@andestech.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Add device driver for a virtual programmable interrupt controller
The virtual PIC is designed as a device tree-based interrupt controller.
The compatible string used by OS for binding the driver is
"google,goldfish-pic".
Signed-off-by: Miodrag Dinic <miodrag.dinic@mips.com>
Signed-off-by: Goran Ferenc <goran.ferenc@mips.com>
Signed-off-by: Aleksandar Markovic <aleksandar.markovic@mips.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/maz/arm-platforms into irq/urgent
Pull irqchip updates for 4.15, take #4 from Marc Zyngier
- A core irq fix for legacy cases where the irq trigger is not reported
by firmware
- A couple of GICv3/4 fixes (Kconfig, of-node refcount, error handling)
- Trivial pr_err fixes
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull irq core updates from Thomas Gleixner:
"A rather large update for the interrupt core code and the irq chip drivers:
- Add a new bitmap matrix allocator and supporting changes, which is
used to replace the x86 vector allocator which comes with separate
pull request. This allows to replace the convoluted nested loop
allocation function in x86 with a facility which supports the
recently added property of managed interrupts proper and allows to
switch to a best effort vector reservation scheme, which addresses
problems with vector exhaustion.
- A large update to the ARM GIC-V3-ITS driver adding support for
range selectors.
- New interrupt controllers:
- Meson and Meson8 GPIO
- BCM7271 L2
- Socionext EXIU
If you expected that this will stop at some point, I have to
disappoint you. There are new ones posted already. Sigh!
- STM32 interrupt controller support for new platforms.
- A pile of fixes, cleanups and updates to the MIPS GIC driver
- The usual small fixes, cleanups and updates all over the place.
Most visible one is to move the irq chip drivers Kconfig switches
into a separate Kconfig menu"
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (70 commits)
genirq: Fix type of shifting literal 1 in __setup_irq()
irqdomain: Drop pointless NULL check in virq_debug_show_one
genirq/proc: Return proper error code when irq_set_affinity() fails
irq/work: Use llist_for_each_entry_safe
irqchip: mips-gic: Print warning if inherited GIC base is used
irqchip/mips-gic: Add pr_fmt and reword pr_* messages
irqchip/stm32: Move the wakeup on interrupt mask
irqchip/stm32: Fix initial values
irqchip/stm32: Add stm32h7 support
dt-bindings/interrupt-controllers: Add compatible string for stm32h7
irqchip/stm32: Add multi-bank management
irqchip/stm32: Select GENERIC_IRQ_CHIP
irqchip/exiu: Add support for Socionext Synquacer EXIU controller
dt-bindings: Add description of Socionext EXIU interrupt controller
irqchip/gic-v3-its: Fix VPE activate callback return value
irqchip: mips-gic: Make IPI bitmaps static
irqchip: mips-gic: Share register writes in gic_set_type()
irqchip: mips-gic: Remove gic_vpes variable
irqchip: mips-gic: Use num_possible_cpus() to reserve IPIs
irqchip: mips-gic: Configure EIC when CPUs come online
...
|
|
Pull OpenRISC updates from Stafford Horne:
"The OpenRISC work is a bit more interesting this time, adding SMP
support and a few general cleanups.
Small Things:
- Move OpenRISC docs into Documentation and clean them up
- Document previously undocumented devicetree bindings
- Update the or1ksim dts to use stdout-path
OpenRISC SMP support details:
- First the "use shadow registers" and "define CPU_BIG_ENDIAN as
true" get the architecture ready for SMP.
- The "add 1 and 2 byte cmpxchg support" and "use qspinlocks and
qrwlocks" add the SMP locking infrastructure as needed. Using the
qspinlocks and qrwlocks as suggested by Peter Z while reviewing the
original spinlocks implementation.
- The "support for ompic" adds a new irqchip device which is used for
IPI communication to support SMP.
- The "initial SMP support" adds smp.c and makes changes to all of
the necessary data-structures to be per-cpu.
The remaining patches are bug fixes and debug helpers which I wanted
to keep separate from the "initial SMP support" in order to allow them
to be reviewed on their own. This includes:
- add cacheflush support to fix icache aliasing
- fix initial preempt state for secondary cpu tasks
- sleep instead of spin on secondary wait
- support framepointers and STACKTRACE_SUPPORT
- enable LOCKDEP_SUPPORT and irqflags tracing
- timer sync: Add tick timer sync logic
- fix possible deadlock in timer sync, pointed out by mips guys
Note: the irqchip patch was reviewed with Marc and we agreed to push
it together with these patches"
* tag 'for-linus' of git://github.com/openrisc/linux:
openrisc: fix possible deadlock scenario during timer sync
openrisc: pass endianness info to sparse
openrisc: add tick timer multi-core sync logic
openrisc: enable LOCKDEP_SUPPORT and irqflags tracing
openrisc: support framepointers and STACKTRACE_SUPPORT
openrisc: add simple_smp dts and defconfig for simulators
openrisc: add cacheflush support to fix icache aliasing
openrisc: sleep instead of spin on secondary wait
openrisc: fix initial preempt state for secondary cpu tasks
openrisc: initial SMP support
irqchip: add initial support for ompic
dt-bindings: add openrisc to vendor prefixes list
openrisc: use qspinlocks and qrwlocks
openrisc: add 1 and 2 byte cmpxchg support
openrisc: use shadow registers to save regs on exception
dt-bindings: openrisc: Add OpenRISC platform SoC
Documentation: openrisc: Updates to README
Documentation: Move OpenRISC docs out of arch/
MAINTAINERS: Add OpenRISC pic maintainer
openrisc: dts: or1ksim: Add stdout-path
|
|
The GICv3 ITS doesn't really depend on PCI. Only the PCI/MSI
part of it does, and there is no reason not to blow away most
of the irqchip stack because PCI is not selected (though not
selecting PCI seem to be asking for punishment, but hey...).
So let's split the PCI-specific part from the ITS in the Kconfig
file, and let's make that part depend on PCI. Architecture specific
hacks (arch/arm{,64}/Kconfig) will be addressed in a separate patch.
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
The Socionext Synquacer SoC has an external interrupt unit (EXIU)
that forwards a block of 32 configurable input lines to 32 adjacent
level-high type GICv3 SPIs.
The EXIU has per-interrupt level/edge and polarity controls, and
mask bits that keep the outgoing lines de-asserted, even though
the controller may still latch interrupt conditions that occur
while the line is masked.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
IPI driver for the Open Multi-Processor Interrupt Controller (ompic) as
described in the Multi-core support section of the OpenRISC 1.2
architecture specification:
https://github.com/openrisc/doc/raw/master/openrisc-arch-1.2-rev0.pdf
Each OpenRISC core contains a full interrupt controller which is used in
the SMP architecture for interrupt balancing. This IPI device, the
ompic, is the only external device required for enabling SMP on
OpenRISC.
Pending ops are stored in a memory bit mask which can allow multiple
pending operations to be set and serviced at a time. This is mostly
borrowed from the alpha IPI implementation.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi>
[shorne@gmail.com: converted ops to bitmask, wrote commit message]
Signed-off-by: Stafford Horne <shorne@gmail.com>
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Add support for the interrupt gpio controller found on Amlogic's meson
SoC family.
This controller is a separate controller from the gpio controller. It is
able to spy on the SoC pad. It is essentially a 256 to 8 router with a
filtering block to select level or edge and polarity. The number of actual
mappable inputs depends on the SoC.
Cc: Heiner Kallweit <hkallweit1@gmail.com>
Signed-off-by: Jerome Brunet <jbrunet@baylibre.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Get the show on the road...
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
UniPhier SoCs contain AIDET (ARM Interrupt Detector). This is intended
to provide additional features that are not covered by GIC. The main
purpose is to provide logic inverter to support low level and falling
edge trigger types for interrupt lines from on-board devices.
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
The Marvell ICU unit is found in the CP110 block of the Marvell Armada
7K and 8K SoCs. It collects the wired interrupts of the devices located
in the CP110 and turns them into SPI interrupts in the GIC located in
the AP806 side of the SoC, by using a memory transaction.
Until now, the ICU was configured in a static fashion by the firmware,
and Linux was relying on this static configuration. By having Linux
configure the ICU, we are more flexible, and we can allocate dynamically
the GIC SPI interrupts only for devices that are actually in use.
The driver was initially written by Hanna Hawa <hannah@marvell.com>.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
This commit adds a simple driver for the Marvell GICP, a hardware unit
that converts memory writes into GIC SPI interrupts. The driver provides
a number of functions to the ICU driver to allocate GICP interrupts, and
get the physical addresses that the ICUs should write to to set/clear
interrupts.
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
The Aspeed 24XX/25XX chips share a single hardware interrupt across 14
separate I2C busses. This adds a dummy irqchip which maps the single
hardware interrupt to software interrupts for each of the busses.
Signed-off-by: Brendan Higgins <brendanhiggins@google.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
In Mediatek SOCs, the CIRQ is a low power interrupt controller
designed to works outside MCUSYS which comprises with Cortex-Ax
cores,CCI and GIC.
The CIRQ controller is integrated in between MCUSYS( include
Cortex-Ax, CCI and GIC ) and interrupt sources as the second
level interrupt controller. The external interrupts which outside
MCUSYS will feed through CIRQ then bypass to GIC. CIRQ can monitors
all edge trigger interupts. When an edge interrupt is triggered,
CIRQ can record the status and generate a pulse signal to GIC when
flush command executed.
When system enters sleep mode, MCUSYS will be turned off to improve
power consumption, also GIC is power down. The edge trigger interrupts
will be lost in this scenario without CIRQ.
This commit provides the CIRQ irqchip implement.
Signed-off-by: Youlin Pei <youlin.pei@mediatek.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
The Moxa Art interrupt controller is very very likely just an instance
of the Faraday FTINTC010 interrupt controller from Faraday Technology.
An indication would be its close association with the FA526 ARM core
and the fact that the register layout is the same.
The implementation in irq-moxart.c can probably be right off replaced
with the irq-ftintc010.c driver by adding a compatible string, selecting
this irqchip from the machine and run.
As a bonus we have an irqchip driver supporting high/low and
rising/falling edges for the Moxa Art, and shared code with the Gemini
platform.
Acked-by: Olof Johansson <olof@lixom.net>
Tested-by: Jonas Jensen <jonas.jensen@gmail.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|