Age | Commit message (Collapse) | Author |
|
The CXL Identify Memory Device output payload emits capacity in 256MB
units. The driver is treating the capacity field as bytes. This was
missed because QEMU reports bytes when it should report bytes / 256MB.
Fixes: 8adaf747c9f0 ("cxl/mem: Find device capabilities")
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Cc: Ben Widawsky <ben.widawsky@intel.com>
Link: https://lore.kernel.org/r/161862021044.3259705.7008520073059739760.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
The "Register Offset Low" register of a "DVSEC Register Locator"
contains the 64K aligned offset for the registers along with the BAR
indicator and an id. The implementation was treating the "Register Block
Offset Low" field a value rather than as a pre-aligned component of the
64-bit offset. So, just mask, don't mask and shift (FIELD_GET).
The user visible result of this bug is that the driver fails to bind to
the device after none of the required blocks are found.
This was missed earlier because the primary development done in the QEMU
environment only uses 0 offsets, i.e. 0 shifted is still 0.
Fixes: 8adaf747c9f0 ("cxl/mem: Find device capabilities")
Reported-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Link: https://lore.kernel.org/r/20210415232610.603273-1-ben.widawsky@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Typically the mem_commands[] array is in sync with 'enum { CXL_CMDS }'.
Current code works well.
However, the array size of mem_commands[] may not strictly be the same
as CXL_MEM_COMMAND_ID_MAX. E.g. if a new CXL_CMD() is added that is
guarded by #ifdefs, the array could be shorter. This could lead then
further to an out-of-bounds array access in cxl_validate_cmd_from_user().
Fix this by forcing the array size to CXL_MEM_COMMAND_ID_MAX. This
also adds range checks for array items in mem_commands[] at compile
time.
Signed-off-by: Robert Richter <rrichter@amd.com>
Link: https://lore.kernel.org/r/20210324141635.22335-1-rrichter@amd.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
There is no power management of cxl virtual devices, disable
device-power-management and runtime-power-management to prevent
userspace from growing expectations of those attributes appearing. They
can be added back in the future if needed.
Reviewed-by: Ben Widawsky <ben.widawsky@intel.com>
Link: https://lore.kernel.org/r/161728761025.2474381.808344500111924819.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
While device_add() will happen to catch dev_set_name() failures it is a
broken pattern to follow given that the core may try to fall back to a
different name.
Add explicit checking for dev_set_name() failures to be cleaned up by
put_device(). Skip cdev_device_add() and proceed directly to
put_device() if the name set fails.
This type of bug is easier to see if 'alloc' is split from 'add'
operations that require put_device() on failure. So cxl_memdev_alloc()
is split out as a result.
Fixes: b39cb1052a5c ("cxl/mem: Register CXL memX devices")
Reported-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Link: https://lore.kernel.org/r/161728760514.2474381.1163928273337158134.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
The percpu_ref to gate whether cxl_memdev_ioctl() is free to use the
driver context (@cxlm) to issue I/O is overkill, implemented incorrectly
(missing a device reference before accessing the percpu_ref), and the
complexities of shutting down a percpu_ref contributed to a bug in the
error unwind in cxl_mem_add_memdev() (missing put_device() to be fixed
separately).
Use an rwsem to explicitly synchronize the usage of cxlmd->cxlm, and add
the missing reference counting for cxlmd in cxl_memdev_open() and
cxl_memdev_release_file().
Fixes: b39cb1052a5c ("cxl/mem: Register CXL memX devices")
Reported-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Link: https://lore.kernel.org/r/161728759948.2474381.17481500816783671817.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
While none the CXL sysfs attributes are threatening to overrun a
PAGE_SIZE of output, it is good form to use the recommended helpers.
Fixes: b39cb1052a5c ("cxl/mem: Register CXL memX devices")
Reported-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Link: https://lore.kernel.org/r/161728759424.2474381.11231441014951343463.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
When submitting a command for userspace, input and output payload bounce
buffers are allocated. For a given command, both input and output
buffers may exist and so when allocation of the input buffer fails, the
output buffer must be freed too.
As far as I can tell, userspace can't easily exploit the leak to OOM a
machine unless the machine was already near OOM state.
Fixes: 583fa5e71cae ("cxl/mem: Add basic IOCTL interface")
Reported-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Link: https://lore.kernel.org/r/20210221035846.680145-1-ben.widawsky@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
The copy_to_user() function returns the number of bytes remaining to be
copied, but we want to return -EFAULT if the copy doesn't complete.
Fixes: b754ffbbc0ee ("cxl/mem: Add basic IOCTL interface")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Link: https://lore.kernel.org/r/YC+K3kgzqm20zCWY@mwanda
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Add initial set of formal commands beyond basic identify and command
enumeration.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> (v2)
Link: https://lore.kernel.org/r/20210217040958.1354670-8-ben.widawsky@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
CXL devices identified by the memory-device class code must implement
the Device Command Interface (described in 8.2.9 of the CXL 2.0 spec).
While the driver already maintains a list of commands it supports, there
is still a need to be able to distinguish between commands that the
driver knows about from commands that are optionally supported by the
hardware.
The Command Effects Log (CEL) is specified in the CXL 2.0 specification.
The CEL is one of two types of logs, the other being vendor specific.
They are distinguished in hardware/spec via UUID. The CEL is useful for
2 things:
1. Determine which optional commands are supported by the CXL device.
2. Enumerate any vendor specific commands
The CEL is used by the driver to determine which commands are available
in the hardware and therefore which commands userspace is allowed to
execute. The set of enabled commands might be a subset of commands which
are advertised in UAPI via CXL_MEM_SEND_COMMAND IOCTL.
With the CEL enabling comes a internal flag to indicate a base set of
commands that are enabled regardless of CEL. Such commands are required
for basic interaction with the hardware and thus can be useful in debug
cases, for example if the CEL is corrupted.
The implementation leaves the statically defined table of commands and
supplements it with a bitmap to determine commands that are enabled.
This organization was chosen for the following reasons:
- Smaller memory footprint. Doesn't need a table per device.
- Reduce memory allocation complexity.
- Fixed command IDs to opcode mapping for all devices makes development
and debugging easier.
- Certain helpers are easily achievable, like cxl_for_each_cmd().
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com> (v2)
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> (v3)
Link: https://lore.kernel.org/r/20210217040958.1354670-7-ben.widawsky@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
The CXL memory device send interface will have a number of supported
commands. The raw command is not such a command. Raw commands allow
userspace to send a specified opcode to the underlying hardware and
bypass all driver checks on the command. The primary use for this
command is to [begrudgingly] allow undocumented vendor specific hardware
commands.
While not the main motivation, it also allows prototyping new hardware
commands without a driver patch and rebuild.
While this all sounds very powerful it comes with a couple of caveats:
1. Bug reports using raw commands will not get the same level of
attention as bug reports using supported commands (via taint).
2. Supported commands will be rejected by the RAW command.
With this comes new debugfs knob to allow full access to your toes with
your weapon of choice.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com> (v2)
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Ariel Sibley <Ariel.Sibley@microchip.com>
Link: https://lore.kernel.org/r/20210217040958.1354670-6-ben.widawsky@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Add a straightforward IOCTL that provides a mechanism for userspace to
query the supported memory device commands. CXL commands as they appear
to userspace are described as part of the UAPI kerneldoc. The command
list returned via this IOCTL will contain the full set of commands that
the driver supports, however, some of those commands may not be
available for use by userspace.
Memory device commands first appear in the CXL 2.0 specification. They
are submitted through a mailbox mechanism specified in the CXL 2.0
specification.
The send command allows userspace to issue mailbox commands directly to
the hardware. The list of available commands to send are the output of
the query command. The driver verifies basic properties of the command
and possibly inspect the input (or output) payload to determine whether
or not the command is allowed (or might taint the kernel).
Reported-by: kernel test robot <lkp@intel.com> # bug in earlier revision
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com> (v2)
Cc: Al Viro <viro@zeniv.linux.org.uk>
Link: https://lore.kernel.org/r/20210217040958.1354670-5-ben.widawsky@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Create the /sys/bus/cxl hierarchy to enumerate:
* Memory Devices (per-endpoint control devices)
* Memory Address Space Devices (platform address ranges with
interleaving, performance, and persistence attributes)
* Memory Regions (active provisioned memory from an address space device
that is in use as System RAM or delegated to libnvdimm as Persistent
Memory regions).
For now, only the per-endpoint control devices are registered on the
'cxl' bus. However, going forward it will provide a mechanism to
coordinate cross-device interleave.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> (v2)
Link: https://lore.kernel.org/r/20210217040958.1354670-4-ben.widawsky@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Provide enough functionality to utilize the mailbox of a memory device.
The mailbox is used to interact with the firmware running on the memory
device. The flow is proven with one implemented command, "identify".
Because the class code has already told the driver this is a memory
device and the identify command is mandatory.
CXL devices contain an array of capabilities that describe the
interactions software can have with the device or firmware running on
the device. A CXL compliant device must implement the device status and
the mailbox capability. Additionally, a CXL compliant memory device must
implement the memory device capability. Each of the capabilities can
[will] provide an offset within the MMIO region for interacting with the
CXL device.
The capabilities tell the driver how to find and map the register space
for CXL Memory Devices. The registers are required to utilize the CXL
spec defined mailbox interface. The spec outlines two mailboxes, primary
and secondary. The secondary mailbox is earmarked for system firmware,
and not handled in this driver.
Primary mailboxes are capable of generating an interrupt when submitting
a background command. That implementation is saved for a later time.
Reported-by: Colin Ian King <colin.king@canonical.com> (coverity)
Reported-by: Dan Carpenter <dan.carpenter@oracle.com> (smatch)
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com> (v2)
Link: https://www.computeexpresslink.org/download-the-specification
Link: https://lore.kernel.org/r/20210217040958.1354670-3-ben.widawsky@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
The CXL.mem protocol allows a device to act as a provider of "System
RAM" and/or "Persistent Memory" that is fully coherent as if the memory
was attached to the typical CPU memory controller.
With the CXL-2.0 specification a PCI endpoint can implement a "Type-3"
device interface and give the operating system control over "Host
Managed Device Memory". See section 2.3 Type 3 CXL Device.
The memory range exported by the device may optionally be described by
the platform firmware memory map, or by infrastructure like LIBNVDIMM to
provision persistent memory capacity from one, or more, CXL.mem devices.
A pre-requisite for Linux-managed memory-capacity provisioning is this
cxl_mem driver that can speak the mailbox protocol defined in section
8.2.8.4 Mailbox Registers.
For now just land the initial driver boiler-plate and Documentation/
infrastructure.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Acked-by: David Rientjes <rientjes@google.com> (v1)
Cc: Jonathan Corbet <corbet@lwn.net>
Link: https://www.computeexpresslink.org/download-the-specification
Link: https://lore.kernel.org/r/20210217040958.1354670-2-ben.widawsky@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|