summaryrefslogtreecommitdiff
path: root/drivers/cpufreq
AgeCommit message (Collapse)Author
2016-03-09cpufreq: governor: Close dbs_data update race conditionRafael J. Wysocki
It is possible for a dbs_data object to be updated after its usage counter has become 0. That may happen if governor_store() runs (via a govenor tunable sysfs attribute write) in parallel with cpufreq_governor_exit() called for the last cpufreq policy associated with the dbs_data in question. In that case, if governor_store() acquires dbs_data->mutex right after cpufreq_governor_exit() has released it, the ->store() callback invoked by it may operate on dbs_data with no users. Although sysfs will cause the kobject_put() in cpufreq_governor_exit() to block until governor_store() has returned, that situation may lead to some unexpected results, depending on the implementation of the ->store callback, and therefore it should be avoided. To that end, modify governor_store() to check the dbs_data's usage count before invoking the ->store() callback and return an error if it is 0 at that point. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09cpufreq: ondemand: Drop unused callback from struct od_opsRafael J. Wysocki
The ->freq_increase callback in struct od_ops is never invoked, so drop it. No functional changes. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09cpufreq: ondemand: Simplify od_update() slightlyRafael J. Wysocki
Drop some lines of code from od_update() by arranging the statements in there in a more logical way. No functional changes. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09cpufreq: governor: Use microseconds in sample delay computationsRafael J. Wysocki
Do not convert microseconds to jiffies and the other way around in governor computations related to the sampling rate and sample delay and drop delay_for_sampling_rate() which isn't of any use then. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09cpufreq: ondemand: Simplify conditionals in od_dbs_timer()Rafael J. Wysocki
Reduce the indentation level in the conditionals in od_dbs_timer() and drop the delay variable from it. No functional changes. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09cpufreq: governor: Move rate_mult to struct policy_dbsRafael J. Wysocki
The rate_mult field in struct od_cpu_dbs_info_s is used by the code shared with the conservative governor and to access it that code has to do an ugly governor type check. However, first of all it is ever only used for policy->cpu, so it is per-policy rather than per-CPU and second, it is initialized to 1 by cpufreq_governor_start(), so if the conservative governor never modifies it, it will have no effect on the results of any computations. For these reasons, move rate_mult to struct policy_dbs_info (as a common field). Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09cpufreq: governor: Reset sample delay in store_sampling_rate()Rafael J. Wysocki
If store_sampling_rate() updates the sample delay when the ondemand governor is in the middle of its high/low dance (OD_SUB_SAMPLE sample type is set), the governor will still do the bottom half of the previous sample which may take too much time. To prevent that from happening, change store_sampling_rate() to always reset the sample delay to 0 which also is consistent with the new behavior of cpufreq_governor_limits(). Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09cpufreq: governor: Get rid of the ->gov_check_cpu callbackRafael J. Wysocki
The way the ->gov_check_cpu governor callback is used by the ondemand and conservative governors is not really straightforward. Namely, the governor calls dbs_check_cpu() that updates the load information for the policy and the invokes ->gov_check_cpu() for the governor. To get rid of that entanglement, notice that cpufreq_governor_limits() doesn't need to call dbs_check_cpu() directly. Instead, it can simply reset the sample delay to 0 which will cause a sample to be taken immediately. The result of that is practically equivalent to calling dbs_check_cpu() except that it will trigger a full update of governor internal state and not just the ->gov_check_cpu() part. Following that observation, make cpufreq_governor_limits() reset the sample delay and turn dbs_check_cpu() into a function that will simply evaluate the load and return the result called dbs_update(). That function can now be called by governors from the routines that previously were pointed to by ->gov_check_cpu and those routines can be called directly by each governor instead of dbs_check_cpu(). This way ->gov_check_cpu becomes unnecessary, so drop it. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09cpufreq: governor: Clean up load-related computationsRafael J. Wysocki
Clean up some load-related computations in dbs_check_cpu() and cpufreq_governor_start() to get rid of unnecessary operations and type casts and make the code easier to read. No functional changes. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09cpufreq: governor: Fix nice contribution computation in dbs_check_cpu()Rafael J. Wysocki
The contribution of the CPU nice time to the idle time in dbs_check_cpu() is computed in a bogus way, as the code may subtract current and previous nice values for different CPUs. That doesn't matter for cases when cpufreq policies are not shared, but may lead to problems otherwise. Fix the computation and simplify it to avoid taking unnecessary steps. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09cpufreq: governor: Avoid atomic operations in hot pathsRafael J. Wysocki
Rework the handling of work items by dbs_update_util_handler() and dbs_work_handler() so the former (which is executed in scheduler paths) only uses atomic operations when absolutely necessary. That is, when the policy is shared and dbs_update_util_handler() has already decided that this is the time to queue up a work item. In particular, this avoids the atomic ops entirely on platforms where policy objects are never shared. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09cpufreq: governor: Simplify gov_cancel_work() slightlyRafael J. Wysocki
The atomic work counter incrementation in gov_cancel_work() is not necessary any more, because work items won't be queued up after gov_clear_update_util() anyway, so drop it along with the comment about how it may be missed by the gov_clear_update_util(). Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09cpufreq: governor: Avoid irq_work_queue_on() crash on non-SMP ARMRafael J. Wysocki
As it turns out, irq_work_queue_on() will crash if invoked on non-SMP ARM platforms, but in fact it is not necessary to use that function in the cpufreq governor code (as it doesn't matter to that code which CPU will handle the irq_work), so change it to always use irq_work_queue(). Fixes: 8fb47ff100af (cpufreq: governor: Replace timers with utilization update callbacks) Reported-and-tested-by: Guenter Roeck <linux@roeck-us.net> Reported-and-tested-by: Tony Lindgren <tony@atomide.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09cpufreq: ondemand: Rearrange od_dbs_timer() to avoid updating delayViresh Kumar
Avoid extra checks in od_dbs_timer() by rearranging updates to the local delay variable in it. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> [ rjw: Changelog ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09cpufreq: conservative: Update sample_delay_ns immediatelyViresh Kumar
The ondemand governor already updates sample_delay_ns immediately on updates to the sampling rate, but conservative doesn't do that. It was left out earlier as the code was really too complex to get that done easily. Things are sorted out very well now, however, and the conservative governor can be modified to follow ondemand in that respect. Moreover, since the code needed to implement that in the conservative governor would be identical to the corresponding ondemand governor's code, make that code common and change both governors to use it. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Tested-by: Juri Lelli <juri.lelli@arm.com> Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com> [ rjw: Changelog ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09cpufreq: governor: No need to manage state machine nowViresh Kumar
The cpufreq core now guarantees that policy->rwsem won't be dropped while running the ->governor callback for the CPUFREQ_GOV_POLICY_EXIT event and will be held acquired until the complete sequence of governor state changes has finished. This allows governor state machine checks to be dropped from multiple functions in cpufreq_governor.c. This also means that policy_dbs->policy can be initialized upfront, so the entire initialization of struct policy_dbs can be carried out in one place. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Tested-by: Juri Lelli <juri.lelli@arm.com> Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com> [ rjw: Changelog ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09cpufreq: Remove cpufreq_governor_lockViresh Kumar
We used to drop policy->rwsem just before calling __cpufreq_governor() in some cases earlier and so it was possible that __cpufreq_governor() ran concurrently via separate threads for the same policy. In order to guarantee valid state transitions for governors, 'governor_enabled' was required to be protected using some locking and cpufreq_governor_lock was added for that. But now __cpufreq_governor() is always called under policy->rwsem, and 'governor_enabled' is protected against races even without cpufreq_governor_lock. Get rid of the extra lock now. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Tested-by: Juri Lelli <juri.lelli@arm.com> Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com> [ rjw : Changelog ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09cpufreq: Call __cpufreq_governor() with policy->rwsem heldViresh Kumar
The cpufreq core code is not consistent with respect to invoking __cpufreq_governor() under policy->rwsem. Changing all code to always hold policy->rwsem around __cpufreq_governor() invocations will allow us to remove cpufreq_governor_lock that is used today because we can't guarantee that __cpufreq_governor() isn't executed twice in parallel for the same policy. We should also ensure that policy->rwsem is held across governor state changes. For example, while adding a CPU to the policy in the CPU online path, we need to stop the governor, change policy->cpus, start the governor and then refresh its limits. The complete sequence must be guaranteed to complete without interruptions by concurrent governor state updates. That can be achieved by holding policy->rwsem around those sequences of operations. Also note that after this patch cpufreq_driver->stop_cpu() and ->exit() will get called under policy->rwsem which wasn't the case earlier. That shouldn't have any side effects, though. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Tested-by: Juri Lelli <juri.lelli@arm.com> Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com> [ rjw: Changelog ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09cpufreq: Merge cpufreq_offline_prepare/finish routinesViresh Kumar
Commit 1aee40ac9c86 (cpufreq: Invoke __cpufreq_remove_dev_finish() after releasing cpu_hotplug.lock) split the cpufreq's CPU offline routine in two pieces, one of them to be run with CPU offline/online locked and the other to be called later. The reason for that split was a possible deadlock scenario involving cpufreq sysfs attributes and CPU offline. However, the handling of CPU offline in cpufreq has changed since then. Policy sysfs attributes are never removed during CPU offline, so there's no need to worry about accessing them during CPU offline, because that can't lead to any deadlocks now. Governor sysfs attributes are still removed in __cpufreq_governor(_EXIT), but there is a new kobject type for them now and its show/store callbacks don't lock CPU offline/online (they don't need to do that). This means that the CPU offline code in cpufreq doesn't need to be split any more, so combine cpufreq_offline_prepare() with cpufreq_offline_finish(). Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> [ rjw: Changelog ] Tested-by: Juri Lelli <juri.lelli@arm.com> Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09cpufreq: governor: Create and traverse list of policy_dbs to avoid deadlockViresh Kumar
The dbs_data_mutex lock is currently used in two places. First, cpufreq_governor_dbs() uses it to guarantee mutual exclusion between invocations of governor operations from the core. Second, it is used by ondemand governor's update_sampling_rate() to ensure the stability of data structures walked by it. The second usage is quite problematic, because update_sampling_rate() is called from a governor sysfs attribute's ->store callback and that leads to a deadlock scenario involving cpufreq_governor_exit() which runs under dbs_data_mutex. Thus it is better to rework the code so update_sampling_rate() doesn't need to acquire dbs_data_mutex. To that end, rework update_sampling_rate() to walk a list of policy_dbs objects supported by the dbs_data one it has been called for (instead of walking cpu_dbs_info object for all CPUs). The list manipulation is protected with dbs_data->mutex which also is held around the execution of update_sampling_rate(), it is not necessary to hold dbs_data_mutex in that function any more. Reported-by: Juri Lelli <juri.lelli@arm.com> Reported-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com> Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> [ rjw: Subject & changelog ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09Revert "cpufreq: Drop rwsem lock around CPUFREQ_GOV_POLICY_EXIT"Viresh Kumar
Earlier, when the struct freq-attr was used to represent governor attributes, the standard cpufreq show/store sysfs attribute callbacks were applied to the governor tunable attributes and they always acquire the policy->rwsem lock before carrying out the operation. That could have resulted in an ABBA deadlock if governor tunable attributes are removed under policy->rwsem while one of them is being accessed concurrently (if sysfs attributes removal wins the race, it will wait for the access to complete with policy->rwsem held while the attribute callback will block on policy->rwsem indefinitely). We attempted to address this issue by dropping policy->rwsem around governor tunable attributes removal (that is, around invocations of the ->governor callback with the event arg equal to CPUFREQ_GOV_POLICY_EXIT) in cpufreq_set_policy(), but that opened up race conditions that had not been possible with policy->rwsem held all the time. The previous commit, "cpufreq: governor: New sysfs show/store callbacks for governor tunables", fixed the original ABBA deadlock by adding new governor specific show/store callbacks. We don't have to drop rwsem around invocations of governor event CPUFREQ_GOV_POLICY_EXIT anymore, and original fix can be reverted now. Fixes: 955ef4833574 (cpufreq: Drop rwsem lock around CPUFREQ_GOV_POLICY_EXIT) Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Reported-by: Juri Lelli <juri.lelli@arm.com> Tested-by: Juri Lelli <juri.lelli@arm.com> Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09cpufreq: governor: Drop unused macros for creating governor tunable attributesViresh Kumar
The previous commit introduced a new set of macros for creating sysfs attributes that represent governor tunables and the old macros used for this purpose are not needed any more, so drop them. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Tested-by: Juri Lelli <juri.lelli@arm.com> Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com> [ rjw: Subject & changelog ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09cpufreq: governor: New sysfs show/store callbacks for governor tunablesViresh Kumar
The ondemand and conservative governors use the global-attr or freq-attr structures to represent sysfs attributes corresponding to their tunables (which of them is actually used depends on whether or not different policy objects can use the same governor with different tunables at the same time and, consequently, on where those attributes are located in sysfs). Unfortunately, in the freq-attr case, the standard cpufreq show/store sysfs attribute callbacks are applied to the governor tunable attributes and they always acquire the policy->rwsem lock before carrying out the operation. That may lead to an ABBA deadlock if governor tunable attributes are removed under policy->rwsem while one of them is being accessed concurrently (if sysfs attributes removal wins the race, it will wait for the access to complete with policy->rwsem held while the attribute callback will block on policy->rwsem indefinitely). We attempted to address this issue by dropping policy->rwsem around governor tunable attributes removal (that is, around invocations of the ->governor callback with the event arg equal to CPUFREQ_GOV_POLICY_EXIT) in cpufreq_set_policy(), but that opened up race conditions that had not been possible with policy->rwsem held all the time. Therefore policy->rwsem cannot be dropped in cpufreq_set_policy() at any point, but the deadlock situation described above must be avoided too. To that end, use the observation that in principle governor tunables may be represented by the same data type regardless of whether the governor is system-wide or per-policy and introduce a new structure, struct governor_attr, for representing them and new corresponding macros for creating show/store sysfs callbacks for them. Also make their parent kobject use a new kobject type whose default show/store callbacks are not related to the standard core cpufreq ones in any way (and they don't acquire policy->rwsem in particular). Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Tested-by: Juri Lelli <juri.lelli@arm.com> Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com> [ rjw: Subject & changelog + rebase ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09cpufreq: governor: Move common tunables to 'struct dbs_data'Viresh Kumar
There are a few common tunables shared between the ondemand and conservative governors. Move them to struct dbs_data to simplify code. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Tested-by: Juri Lelli <juri.lelli@arm.com> Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com> [ rjw: Changelog ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09cpufreq: governor: Create generic macro for common tunablesViresh Kumar
Some tunables are present in governor-specific structures, whereas one (min_sampling_rate) is located directly in struct dbs_data. There is a special macro for creating its sysfs attribute and the show/store callbacks, but since more tunables are going to be moved to struct dbs_data, a new generic macro for such cases will be useful, so add it and use it for min_sampling_rate. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Tested-by: Juri Lelli <juri.lelli@arm.com> Tested-by: Shilpasri G Bhat <shilpa.bhat@linux.vnet.ibm.com> [ rjw: Subject & changelog ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-03-09cpufreq: governor: Drop pointless goto from cpufreq_governor_init()Rafael J. Wysocki
It is silly to jump around "return 0", so don't do that. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09cpufreq: governor: Rename skip_work to work_countRafael J. Wysocki
The skip_work field in struct policy_dbs_info technically is a counter, so give it a new name to reflect that. No functional changes. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09cpufreq: governor: Symmetrize cpu_dbs_info initialization and cleanupRafael J. Wysocki
Make the initialization of struct cpu_dbs_info objects in alloc_policy_dbs_info() and the code that cleans them up in free_policy_dbs_info() more symmetrical. In particular, set/clear the update_util.func field in those functions along with the policy_dbs field. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09cpufreq: governor: Rearrange governor data structuresRafael J. Wysocki
The struct policy_dbs_info objects representing per-policy governor data are not accessible directly from the corresponding policy objects. To access them, one has to get a pointer to the struct cpu_dbs_info of policy->cpu and use the policy_dbs field of that which isn't really straightforward. To address that rearrange the governor data structures so the governor_data pointer in struct cpufreq_policy will point to struct policy_dbs_info (instead of struct dbs_data) and that will contain a pointer to struct dbs_data. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09cpufreq: governor: Simplify cpufreq_governor_limits()Rafael J. Wysocki
Use the observation that cpufreq_governor_limits() doesn't have to get to the policy object it wants to manipulate by walking the reference chain cdbs->policy_dbs->policy, as the final pointer is actually equal to its argument, and make it access the policy object directy via its argument. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09cpufreq: governor: Drop cpu argument from dbs_check_cpu()Rafael J. Wysocki
Since policy->cpu is always passed as the second argument to dbs_check_cpu(), it is not really necessary to pass it, because the function can obtain that value via its first argument just fine. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09cpufreq: governor: Rename cpu_common_dbs_info to policy_dbs_infoRafael J. Wysocki
The struct cpu_common_dbs_info structure represents the per-policy part of the governor data (for the ondemand and conservative governors), but its name doesn't reflect its purpose. Rename it to struct policy_dbs_info and rename variables related to it accordingly. No functional changes. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09cpufreq: governor: Drop the gov pointer from struct dbs_dataRafael J. Wysocki
Since it is possible to obtain a pointer to struct dbs_governor from a pointer to the struct governor embedded in it with the help of container_of(), the additional gov pointer in struct dbs_data isn't really necessary. Drop that pointer and make the code using it reach the dbs_governor object via policy->governor. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09cpufreq: governor: Rework cpufreq_governor_dbs()Rafael J. Wysocki
Since it is possible to obtain a pointer to struct dbs_governor from a pointer to the struct governor embedded in it via container_of(), the second argument of cpufreq_governor_init() is not necessary. Accordingly, cpufreq_governor_dbs() doesn't need its second argument either and the ->governor callbacks for both the ondemand and conservative governors may be set to cpufreq_governor_dbs() directly. Make that happen. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Saravana Kannan <skannan@codeaurora.org> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09cpufreq: governor: Rename some data types and variablesRafael J. Wysocki
The ondemand and conservative governors are represented by struct common_dbs_data whose name doesn't reflect the purpose it is used for, so rename it to struct dbs_governor and rename variables of that type accordingly. No functional changes. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09cpufreq: governor: Put governor structure into common_dbs_dataRafael J. Wysocki
For the ondemand and conservative governors (generally, governors that use the common code in cpufreq_governor.c), there are two static data structures representing the governor, the struct governor structure (the interface to the cpufreq core) and the struct common_dbs_data one (the interface to the cpufreq_governor.c code). There's no fundamental reason why those two structures have to be separate. Moreover, if the struct governor one is included into struct common_dbs_data, it will be possible to reach the latter from the policy via its policy->governor pointer, so it won't be necessary to pass a separate pointer to it around. For this reason, embed struct governor in struct common_dbs_data. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Saravana Kannan <skannan@codeaurora.org> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09cpufreq: governor: Avoid passing dbs_data pointers around unnecessarilyRafael J. Wysocki
Do not pass struct dbs_data pointers to the family of functions implementing governor operations in cpufreq_governor.c as they can take that pointer from policy->governor by themselves. The cpufreq_governor_init() case is slightly more complicated, since policy->governor may be NULL when it is invoked, but then it can reach the pointer in question via its cdata argument just fine. While at it, rework cpufreq_governor_dbs() to avoid a pointless policy_governor check in the CPUFREQ_GOV_POLICY_INIT case. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09cpufreq: governor: Use common mutex for dbs_data protectionRafael J. Wysocki
Every governor relying on the common code in cpufreq_governor.c has to provide its own mutex in struct common_dbs_data. However, there actually is no need to have a separate mutex per governor for this purpose, they may be using the same global mutex just fine. Accordingly, introduce a single common mutex for that and drop the mutex field from struct common_dbs_data. That at least will ensure that the mutex is always present and initialized regardless of what the particular governors do. Another benefit is that the common code does not need a pointer to a governor-related structure to get to the mutex which sometimes helps. Finally, it makes the code generally easier to follow. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Saravana Kannan <skannan@codeaurora.org> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-03-09cpufreq: governor: Replace timers with utilization update callbacksRafael J. Wysocki
Instead of using a per-CPU deferrable timer for queuing up governor work items, register a utilization update callback that will be invoked from the scheduler on utilization changes. The sampling rate is still the same as what was used for the deferrable timers and the added irq_work overhead should be offset by the eliminated timers overhead, so in theory the functional impact of this patch should not be significant. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Tested-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
2016-03-09cpufreq: intel_pstate: Replace timers with utilization update callbacksRafael J. Wysocki
Instead of using a per-CPU deferrable timer for utilization sampling and P-states adjustments, register a utilization update callback that will be invoked from the scheduler on utilization changes. The sampling rate is still the same as what was used for the deferrable timers, so the functional impact of this patch should not be significant. Based on an earlier patch from Srinivas Pandruvada. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
2016-03-09cpufreq: Add mechanism for registering utilization update callbacksRafael J. Wysocki
Introduce a mechanism by which parts of the cpufreq subsystem ("setpolicy" drivers or the core) can register callbacks to be executed from cpufreq_update_util() which is invoked by the scheduler's update_load_avg() on CPU utilization changes. This allows the "setpolicy" drivers to dispense with their timers and do all of the computations they need and frequency/voltage adjustments in the update_load_avg() code path, among other things. The update_load_avg() changes were suggested by Peter Zijlstra. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Ingo Molnar <mingo@kernel.org>
2016-02-05cpufreq: Clean up default and fallback governor setupRafael J. Wysocki
The preprocessor magic used for setting the default cpufreq governor (and for using the performance governor as a fallback one for that matter) is really nasty, so replace it with __weak functions and overrides. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Saravana Kannan <skannan@codeaurora.org> Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-01-29Merge branches 'pm-cpuidle', 'pm-cpufreq', 'pm-domains' and 'pm-sleep'Rafael J. Wysocki
* pm-cpuidle: cpuidle: coupled: remove unused define cpuidle_coupled_lock cpuidle: fix fallback mechanism for suspend to idle in absence of enter_freeze * pm-cpufreq: cpufreq: cpufreq-dt: avoid uninitialized variable warnings: cpufreq: pxa2xx: fix pxa_cpufreq_change_voltage prototype cpufreq: Use list_is_last() to check last entry of the policy list cpufreq: Fix NULL reference crash while accessing policy->governor_data * pm-domains: PM / Domains: Fix typo in comment PM / Domains: Fix potential deadlock while adding/removing subdomains PM / domains: fix lockdep issue for all subdomains * pm-sleep: PM: APM_EMULATION does not depend on PM
2016-01-27cpufreq: cpufreq-dt: avoid uninitialized variable warnings:Arnd Bergmann
gcc warns quite a bit about values returned from allocate_resources() in cpufreq-dt.c: cpufreq-dt.c: In function 'cpufreq_init': cpufreq-dt.c:327:6: error: 'cpu_dev' may be used uninitialized in this function [-Werror=maybe-uninitialized] cpufreq-dt.c:197:17: note: 'cpu_dev' was declared here cpufreq-dt.c:376:2: error: 'cpu_clk' may be used uninitialized in this function [-Werror=maybe-uninitialized] cpufreq-dt.c:199:14: note: 'cpu_clk' was declared here cpufreq-dt.c: In function 'dt_cpufreq_probe': cpufreq-dt.c:461:2: error: 'cpu_clk' may be used uninitialized in this function [-Werror=maybe-uninitialized] cpufreq-dt.c:447:14: note: 'cpu_clk' was declared here The problem is that it's slightly hard for gcc to follow return codes across PTR_ERR() calls. This patch uses explicit assignments to the "ret" variable to make it easier for gcc to verify that the code is actually correct, without the need to add a bogus initialization. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-01-27cpufreq: pxa2xx: fix pxa_cpufreq_change_voltage prototypeArnd Bergmann
There are two definitions of pxa_cpufreq_change_voltage, with slightly different prototypes after one of them had its argument marked 'const'. Now the other one (for !CONFIG_REGULATOR) produces a harmless warning: drivers/cpufreq/pxa2xx-cpufreq.c: In function 'pxa_set_target': drivers/cpufreq/pxa2xx-cpufreq.c:291:36: warning: passing argument 1 of 'pxa_cpufreq_change_voltage' discards 'const' qualifier from pointer target type [-Wdiscarded-qualifiers] ret = pxa_cpufreq_change_voltage(&pxa_freq_settings[idx]); ^ drivers/cpufreq/pxa2xx-cpufreq.c:205:12: note: expected 'struct pxa_freqs *' but argument is of type 'const struct pxa_freqs *' static int pxa_cpufreq_change_voltage(struct pxa_freqs *pxa_freq) ^ This changes the prototype in the same way as the other, which avoids the warning. Fixes: 03c229906311 (cpufreq: pxa: make pxa_freqs arrays const) Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Cc: 4.2+ <stable@vger.kernel.org> # 4.2+ Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-01-27cpufreq: Use list_is_last() to check last entry of the policy listGautham R Shenoy
Currently next_policy() explicitly checks if a policy is the last policy in the cpufreq_policy_list. Use the standard list_is_last primitive instead. Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-01-27cpufreq: Fix NULL reference crash while accessing policy->governor_dataViresh Kumar
There is a race discovered by Juri, where we are able to: - create and read a sysfs file before policy->governor_data is being set to a non NULL value. OR - set policy->governor_data to NULL, and reading a file before being destroyed. And so such a crash is reported: Unable to handle kernel NULL pointer dereference at virtual address 0000000c pgd = edfc8000 [0000000c] *pgd=bfc8c835 Internal error: Oops: 17 [#1] SMP ARM Modules linked in: CPU: 4 PID: 1730 Comm: cat Not tainted 4.5.0-rc1+ #463 Hardware name: ARM-Versatile Express task: ee8e8480 ti: ee930000 task.ti: ee930000 PC is at show_ignore_nice_load_gov_pol+0x24/0x34 LR is at show+0x4c/0x60 pc : [<c058f1bc>] lr : [<c058ae88>] psr: a0070013 sp : ee931dd0 ip : ee931de0 fp : ee931ddc r10: ee4bc290 r9 : 00001000 r8 : ef2cb000 r7 : ee4bc200 r6 : ef2cb000 r5 : c0af57b0 r4 : ee4bc2e0 r3 : 00000000 r2 : 00000000 r1 : c0928df4 r0 : ef2cb000 Flags: NzCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment none Control: 10c5387d Table: adfc806a DAC: 00000051 Process cat (pid: 1730, stack limit = 0xee930210) Stack: (0xee931dd0 to 0xee932000) 1dc0: ee931dfc ee931de0 c058ae88 c058f1a4 1de0: edce3bc0 c07bfca4 edce3ac0 00001000 ee931e24 ee931e00 c01fcb90 c058ae48 1e00: 00000001 edce3bc0 00000000 00000001 ee931e50 ee8ff480 ee931e34 ee931e28 1e20: c01fb33c c01fcb0c ee931e8c ee931e38 c01a5210 c01fb314 ee931e9c ee931e48 1e40: 00000000 edce3bf0 befe4a00 ee931f78 00000000 00000000 000001e4 00000000 1e60: c00545a8 edce3ac0 00001000 00001000 befe4a00 ee931f78 00000000 00001000 1e80: ee931ed4 ee931e90 c01fbed8 c01a5038 ed085a58 00020000 00000000 00000000 1ea0: c0ad72e4 ee931f78 ee8ff488 ee8ff480 c077f3fc 00001000 befe4a00 ee931f78 1ec0: 00000000 00001000 ee931f44 ee931ed8 c017c328 c01fbdc4 00001000 00000000 1ee0: ee8ff480 00001000 ee931f44 ee931ef8 c017c65c c03deb10 ee931fac ee931f08 1f00: c0009270 c001f290 c0a8d968 ef2cb000 ef2cb000 ee8ff480 00000020 ee8ff480 1f20: ee8ff480 befe4a00 00001000 ee931f78 00000000 00000000 ee931f74 ee931f48 1f40: c017d1ec c017c2f8 c019c724 c019c684 ee8ff480 ee8ff480 00001000 befe4a00 1f60: 00000000 00000000 ee931fa4 ee931f78 c017d2a8 c017d160 00000000 00000000 1f80: 000a9f20 00001000 befe4a00 00000003 c000ffe4 ee930000 00000000 ee931fa8 1fa0: c000fe40 c017d264 000a9f20 00001000 00000003 befe4a00 00001000 00000000 Unable to handle kernel NULL pointer dereference at virtual address 0000000c 1fc0: 000a9f20 00001000 befe4a00 00000003 00000000 00000000 00000003 00000001 pgd = edfc4000 [0000000c] *pgd=bfcac835 1fe0: 00000000 befe49dc 000197f8 b6e35dfc 60070010 00000003 3065b49d 134ac2c9 [<c058f1bc>] (show_ignore_nice_load_gov_pol) from [<c058ae88>] (show+0x4c/0x60) [<c058ae88>] (show) from [<c01fcb90>] (sysfs_kf_seq_show+0x90/0xfc) [<c01fcb90>] (sysfs_kf_seq_show) from [<c01fb33c>] (kernfs_seq_show+0x34/0x38) [<c01fb33c>] (kernfs_seq_show) from [<c01a5210>] (seq_read+0x1e4/0x4e4) [<c01a5210>] (seq_read) from [<c01fbed8>] (kernfs_fop_read+0x120/0x1a0) [<c01fbed8>] (kernfs_fop_read) from [<c017c328>] (__vfs_read+0x3c/0xe0) [<c017c328>] (__vfs_read) from [<c017d1ec>] (vfs_read+0x98/0x104) [<c017d1ec>] (vfs_read) from [<c017d2a8>] (SyS_read+0x50/0x90) [<c017d2a8>] (SyS_read) from [<c000fe40>] (ret_fast_syscall+0x0/0x1c) Code: e5903044 e1a00001 e3081df4 e34c1092 (e593300c) ---[ end trace 5994b9a5111f35ee ]--- Fix that by making sure, policy->governor_data is updated at the right places only. Cc: 4.2+ <stable@vger.kernel.org> # 4.2+ Reported-and-tested-by: Juri Lelli <juri.lelli@arm.com> Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-01-15Merge tag 'powerpc-4.5-1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux Pull powerpc updates from Michael Ellerman: "Core: - Ground work for the new Power9 MMU from Aneesh Kumar K.V - Optimise FP/VMX/VSX context switching from Anton Blanchard Misc: - Various cleanups from Krzysztof Kozlowski, John Ogness, Rashmica Gupta, Russell Currey, Gavin Shan, Daniel Axtens, Michael Neuling, Andrew Donnellan - Allow wrapper to work on non-english system from Laurent Vivier - Add rN aliases to the pt_regs_offset table from Rashmica Gupta - Fix module autoload for rackmeter & axonram drivers from Luis de Bethencourt - Include KVM guest test in all interrupt vectors from Paul Mackerras - Fix DSCR inheritance over fork() from Anton Blanchard - Make value-returning atomics & {cmp}xchg* & their atomic_ versions fully ordered from Boqun Feng - Print MSR TM bits in oops messages from Michael Neuling - Add TM signal return & invalid stack selftests from Michael Neuling - Limit EPOW reset event warnings from Vipin K Parashar - Remove the Cell QPACE code from Rashmica Gupta - Append linux_banner to exception information in xmon from Rashmica Gupta - Add selftest to check if VSRs are corrupted from Rashmica Gupta - Remove broken GregorianDay() from Daniel Axtens - Import Anton's context_switch2 benchmark into selftests from Michael Ellerman - Add selftest script to test HMI functionality from Daniel Axtens - Remove obsolete OPAL v2 support from Stewart Smith - Make enter_rtas() private from Michael Ellerman - PPR exception cleanups from Michael Ellerman - Add page soft dirty tracking from Laurent Dufour - Add support for Nvlink NPUs from Alistair Popple - Add support for kexec on 476fpe from Alistair Popple - Enable kernel CPU dlpar from sysfs from Nathan Fontenot - Copy only required pieces of the mm_context_t to the paca from Michael Neuling - Add a kmsg_dumper that flushes OPAL console output on panic from Russell Currey - Implement save_stack_trace_regs() to enable kprobe stack tracing from Steven Rostedt - Add HWCAP bits for Power9 from Michael Ellerman - Fix _PAGE_PTE breaking swapoff from Aneesh Kumar K.V - Fix _PAGE_SWP_SOFT_DIRTY breaking swapoff from Hugh Dickins - scripts/recordmcount.pl: support data in text section on powerpc from Ulrich Weigand - Handle R_PPC64_ENTRY relocations in modules from Ulrich Weigand cxl: - cxl: Fix possible idr warning when contexts are released from Vaibhav Jain - cxl: use correct operator when writing pcie config space values from Andrew Donnellan - cxl: Fix DSI misses when the context owning task exits from Vaibhav Jain - cxl: fix build for GCC 4.6.x from Brian Norris - cxl: use -Werror only with CONFIG_PPC_WERROR from Brian Norris - cxl: Enable PCI device ID for future IBM CXL adapter from Uma Krishnan Freescale: - Freescale updates from Scott: Highlights include moving QE code out of arch/powerpc (to be shared with arm), device tree updates, and minor fixes" * tag 'powerpc-4.5-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (149 commits) powerpc/module: Handle R_PPC64_ENTRY relocations scripts/recordmcount.pl: support data in text section on powerpc powerpc/powernv: Fix OPAL_CONSOLE_FLUSH prototype and usages powerpc/mm: fix _PAGE_SWP_SOFT_DIRTY breaking swapoff powerpc/mm: Fix _PAGE_PTE breaking swapoff cxl: Enable PCI device ID for future IBM CXL adapter cxl: use -Werror only with CONFIG_PPC_WERROR cxl: fix build for GCC 4.6.x powerpc: Add HWCAP bits for Power9 powerpc/powernv: Reserve PE#0 on NPU powerpc/powernv: Change NPU PE# assignment powerpc/powernv: Fix update of NVLink DMA mask powerpc/powernv: Remove misleading comment in pci.c powerpc: Implement save_stack_trace_regs() to enable kprobe stack tracing powerpc: Fix build break due to paca mm_context_t changes cxl: Fix DSI misses when the context owning task exits MAINTAINERS: Update Scott Wood's e-mail address powerpc/powernv: Fix minor off-by-one error in opal_mce_check_early_recovery() powerpc: Fix style of self-test config prompts powerpc/powernv: Only delay opal_rtc_read() retry when necessary ...
2016-01-05cpufreq-dt: fix handling regulator_get_voltage() resultAndrzej Hajda
The function can return negative values so it should be assigned to signed type. The problem has been detected using proposed semantic patch scripts/coccinelle/tests/unsigned_lesser_than_zero.cocci. Link: http://permalink.gmane.org/gmane.linux.kernel/2038576 Signed-off-by: Andrzej Hajda <a.hajda@samsung.com> Acked-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-01-05cpufreq: governor: Fix negative idle_time when configured with ↵Chen Yu
CONFIG_HZ_PERIODIC It is reported that, with CONFIG_HZ_PERIODIC=y cpu stays at the lowest frequency even if the usage goes to 100%, neither ondemand nor conservative governor works, however performance and userspace work as expected. If set with CONFIG_NO_HZ_FULL=y, everything goes well. This problem is caused by improper calculation of the idle_time when the load is extremely high(near 100%). Firstly, cpufreq_governor uses get_cpu_idle_time to get the total idle time for specific cpu, then: 1.If the system is configured with CONFIG_NO_HZ_FULL, the idle time is returned by ktime_get, which is always increasing, it's OK. 2.However, if the system is configured with CONFIG_HZ_PERIODIC, get_cpu_idle_time might not guarantee to be always increasing, because it will leverage get_cpu_idle_time_jiffy to calculate the idle_time, consider the following scenario: At T1: idle_tick_1 = total_tick_1 - user_tick_1 sample period(80ms)... At T2: ( T2 = T1 + 80ms): idle_tick_2 = total_tick_2 - user_tick_2 Currently the algorithm is using (idle_tick_2 - idle_tick_1) to get the delta idle_time during the past sample period, however it CAN NOT guarantee that idle_tick_2 >= idle_tick_1, especially when cpu load is high. (Yes, total_tick_2 >= total_tick_1, and user_tick_2 >= user_tick_1, but how about idle_tick_2 and idle_tick_1? No guarantee.) So governor might get a negative value of idle_time during the past sample period, which might mislead the system that the idle time is very big(converted to unsigned int), and the busy time is nearly zero, which causes the governor to always choose the lowest cpufreq, then cause this problem. In theory there are two solutions: 1.The logic should not rely on the idle tick during every sample period, but be based on the busy tick directly, as this is how 'top' is implemented. 2.Or the logic must make sure that the idle_time is strictly increasing during each sample period, then there would be no negative idle_time anymore. This solution requires minimum modification to current code and this patch uses method 2. Link: https://bugzilla.kernel.org/show_bug.cgi?id=69821 Reported-by: Jan Fikar <j.fikar@gmail.com> Signed-off-by: Chen Yu <yu.c.chen@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>