summaryrefslogtreecommitdiff
path: root/block/bfq-wf2q.c
AgeCommit message (Collapse)Author
2020-08-18bfq: fix blkio cgroup leakage v4Dmitry Monakhov
Changes from v1: - update commit description with proper ref-accounting justification commit db37a34c563b ("block, bfq: get a ref to a group when adding it to a service tree") introduce leak forbfq_group and blkcg_gq objects because of get/put imbalance. In fact whole idea of original commit is wrong because bfq_group entity can not dissapear under us because it is referenced by child bfq_queue's entities from here: -> bfq_init_entity() ->bfqg_and_blkg_get(bfqg); ->entity->parent = bfqg->my_entity -> bfq_put_queue(bfqq) FINAL_PUT ->bfqg_and_blkg_put(bfqq_group(bfqq)) ->kmem_cache_free(bfq_pool, bfqq); So parent entity can not disappear while child entity is in tree, and child entities already has proper protection. This patch revert commit db37a34c563b ("block, bfq: get a ref to a group when adding it to a service tree") bfq_group leak trace caused by bad commit: -> blkg_alloc -> bfq_pq_alloc -> bfqg_get (+1) ->bfq_activate_bfqq ->bfq_activate_requeue_entity -> __bfq_activate_entity ->bfq_get_entity ->bfqg_and_blkg_get (+1) <==== : Note1 ->bfq_del_bfqq_busy ->bfq_deactivate_entity+0x53/0xc0 [bfq] ->__bfq_deactivate_entity+0x1b8/0x210 [bfq] -> bfq_forget_entity(is_in_service = true) entity->on_st_or_in_serv = false <=== :Note2 if (is_in_service) return; ==> do not touch reference -> blkcg_css_offline -> blkcg_destroy_blkgs -> blkg_destroy -> bfq_pd_offline -> __bfq_deactivate_entity if (!entity->on_st_or_in_serv) /* true, because (Note2) return false; -> bfq_pd_free -> bfqg_put() (-1, byt bfqg->ref == 2) because of (Note2) So bfq_group and blkcg_gq will leak forever, see test-case below. ##TESTCASE_BEGIN: #!/bin/bash max_iters=${1:-100} #prep cgroup mounts mount -t tmpfs cgroup_root /sys/fs/cgroup mkdir /sys/fs/cgroup/blkio mount -t cgroup -o blkio none /sys/fs/cgroup/blkio # Prepare blkdev grep blkio /proc/cgroups truncate -s 1M img losetup /dev/loop0 img echo bfq > /sys/block/loop0/queue/scheduler grep blkio /proc/cgroups for ((i=0;i<max_iters;i++)) do mkdir -p /sys/fs/cgroup/blkio/a echo 0 > /sys/fs/cgroup/blkio/a/cgroup.procs dd if=/dev/loop0 bs=4k count=1 of=/dev/null iflag=direct 2> /dev/null echo 0 > /sys/fs/cgroup/blkio/cgroup.procs rmdir /sys/fs/cgroup/blkio/a grep blkio /proc/cgroups done ##TESTCASE_END: Fixes: db37a34c563b ("block, bfq: get a ref to a group when adding it to a service tree") Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Signed-off-by: Dmitry Monakhov <dmtrmonakhov@yandex-team.ru> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-02-03block, bfq: get a ref to a group when adding it to a service treePaolo Valente
BFQ schedules generic entities, which may represent either bfq_queues or groups of bfq_queues. When an entity is inserted into a service tree, a reference must be taken, to make sure that the entity does not disappear while still referred in the tree. Unfortunately, such a reference is mistakenly taken only if the entity represents a bfq_queue. This commit takes a reference also in case the entity represents a group. Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Chris Evich <cevich@redhat.com> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-02-03block, bfq: extend incomplete name of field on_stPaolo Valente
The flag on_st in the bfq_entity data structure is true if the entity is on a service tree or is in service. Yet the name of the field, confusingly, does not mention the second, very important case. Extend the name to mention the second case too. Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-01-22block, bfq: improve arithmetic division in bfq_delta()Wen Yang
do_div() does a 64-by-32 division. Use div64_ul() instead of it if the divisor is unsigned long, to avoid truncation to 32-bit. And as a nice side effect also cleans up the function a bit. Signed-off-by: Wen Yang <wenyang@linux.alibaba.com> Cc: Paolo Valente <paolo.valente@linaro.org> Cc: Jens Axboe <axboe@fb.com> Cc: linux-block@vger.kernel.org Cc: linux-kernel@vger.kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-09-06bfq: Fix the missing barrier in __bfq_entity_update_weight_prioFam Zheng
The comment of bfq_group_set_weight says the reading of prio_changed should happen before the reading of weight, but a memory barrier is missing here. Add it now, to match the smp_wmb() there. Signed-off-by: Fam Zheng <zhengfeiran@bytedance.com> Reviewed-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-30block: switch all files cleared marked as GPLv2 or later to SPDX tagsChristoph Hellwig
All these files have some form of the usual GPLv2 or later boilerplate. Switch them to use SPDX tags instead. Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-22Merge tag 'v5.1-rc6' into for-5.2/blockJens Axboe
Pull in v5.1-rc6 to resolve two conflicts. One is in BFQ, in just a comment, and is trivial. The other one is a conflict due to a later fix in the bio multi-page work, and needs a bit more care. * tag 'v5.1-rc6': (770 commits) Linux 5.1-rc6 block: make sure that bvec length can't be overflow block: kill all_q_node in request_queue x86/cpu/intel: Lower the "ENERGY_PERF_BIAS: Set to normal" message's log priority coredump: fix race condition between mmget_not_zero()/get_task_mm() and core dumping mm/kmemleak.c: fix unused-function warning init: initialize jump labels before command line option parsing kernel/watchdog_hld.c: hard lockup message should end with a newline kcov: improve CONFIG_ARCH_HAS_KCOV help text mm: fix inactive list balancing between NUMA nodes and cgroups mm/hotplug: treat CMA pages as unmovable proc: fixup proc-pid-vm test proc: fix map_files test on F29 mm/vmstat.c: fix /proc/vmstat format for CONFIG_DEBUG_TLBFLUSH=y CONFIG_SMP=n mm/memory_hotplug: do not unlock after failing to take the device_hotplug_lock mm: swapoff: shmem_unuse() stop eviction without igrab() mm: swapoff: take notice of completion sooner mm: swapoff: remove too limiting SWAP_UNUSE_MAX_TRIES mm: swapoff: shmem_find_swap_entries() filter out other types slab: store tagged freelist for off-slab slabmgmt ... Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-10block, bfq: fix use after free in bfq_bfqq_expirePaolo Valente
The function bfq_bfqq_expire() invokes the function __bfq_bfqq_expire(), and the latter may free the in-service bfq-queue. If this happens, then no other instruction of bfq_bfqq_expire() must be executed, or a use-after-free will occur. Basing on the assumption that __bfq_bfqq_expire() invokes bfq_put_queue() on the in-service bfq-queue exactly once, the queue is assumed to be freed if its refcounter is equal to one right before invoking __bfq_bfqq_expire(). But, since commit 9dee8b3b057e ("block, bfq: fix queue removal from weights tree") this assumption is false. __bfq_bfqq_expire() may also invoke bfq_weights_tree_remove() and, since commit 9dee8b3b057e ("block, bfq: fix queue removal from weights tree"), also the latter function may invoke bfq_put_queue(). So __bfq_bfqq_expire() may invoke bfq_put_queue() twice, and this is the actual case where the in-service queue may happen to be freed. To address this issue, this commit moves the check on the refcounter of the queue right around the last bfq_put_queue() that may be invoked on the queue. Fixes: 9dee8b3b057e ("block, bfq: fix queue removal from weights tree") Reported-by: Dmitrii Tcvetkov <demfloro@demfloro.ru> Reported-by: Douglas Anderson <dianders@chromium.org> Tested-by: Dmitrii Tcvetkov <demfloro@demfloro.ru> Tested-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-08block, bfq: fix some typos in commentsAngelo Ruocco
Some of the comments in the bfq files had typos. This patch fixes them. Signed-off-by: Angelo Ruocco <angeloruocco90@gmail.com> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-01block, bfq: do not idle for lowest-weight queuesPaolo Valente
In most cases, it is detrimental for throughput to plug I/O dispatch when the in-service bfq_queue becomes temporarily empty (plugging is performed to wait for the possible arrival, soon, of new I/O from the in-service queue). There is however a case where plugging is needed for service guarantees. If a bfq_queue, say Q, has a higher weight than some other active bfq_queue, and is sync, i.e., contains sync I/O, then, to guarantee that Q does receive a higher share of the throughput than other lower-weight queues, it is necessary to plug I/O dispatch when Q remains temporarily empty while being served. For this reason, BFQ performs I/O plugging when some active bfq_queue has a higher weight than some other active bfq_queue. But this is unnecessarily overkill. In fact, if the in-service bfq_queue actually has a weight lower than or equal to the other queues, then the queue *must not* be guaranteed a higher share of the throughput than the other queues. So, not plugging I/O cannot cause any harm to the queue. And can boost throughput. Taking advantage of this fact, this commit does not plug I/O for sync bfq_queues with a weight lower than or equal to the weights of the other queues. Here is an example of the resulting throughput boost with the dbench workload, which is particularly nasty for BFQ. With the dbench test in the Phoronix suite, BFQ reaches its lowest total throughput with 6 clients on a filesystem with journaling, in case the journaling daemon has a higher weight than normal processes. Before this commit, the total throughput was ~80 MB/sec on a PLEXTOR PX-256M5, after this commit it is ~100 MB/sec. Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-04-01block/bfq: fix ifdef for CONFIG_BFQ_GROUP_IOSCHED=yKonstantin Khlebnikov
Replace BFQ_GROUP_IOSCHED_ENABLED with CONFIG_BFQ_GROUP_IOSCHED. Code under these ifdefs never worked, something might be broken. Fixes: 0471559c2fbd ("block, bfq: add/remove entity weights correctly") Fixes: 73d58118498b ("block, bfq: consider also ioprio classes in symmetry detection") Reviewed-by: Holger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-01-31block, bfq: fix queue removal from weights treePaolo Valente
bfq maintains an ordered list, through a red-black tree, of unique weights of active bfq_queues. This list is used to detect whether there are active queues with differentiated weights. The weight of a queue is removed from the list when both the following two conditions become true: (1) the bfq_queue is flagged as inactive (2) the has no in-flight request any longer; Unfortunately, in the rare cases where condition (2) becomes true before condition (1), the removal fails, because the function to remove the weight of the queue (bfq_weights_tree_remove) is rightly invoked in the path that deactivates the bfq_queue, but mistakenly invoked *before* the function that actually performs the deactivation (bfq_deactivate_bfqq). This commits moves the invocation of bfq_weights_tree_remove for condition (1) to after bfq_deactivate_bfqq. As a consequence of this move, it is necessary to add a further reference to the queue when the weight of a queue is added, because the queue might otherwise be freed before bfq_weights_tree_remove is invoked. This commit adds this reference and makes all related modifications. Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-01-31block, bfq: consider also ioprio classes in symmetry detectionPaolo Valente
In asymmetric scenarios, i.e., when some bfq_queue or bfq_group needs to be guaranteed a different bandwidth than other bfq_queues or bfq_groups, these service guaranteed can be provided only by plugging I/O dispatch, completely or partially, when the queue in service remains temporarily empty. A case where asymmetry is particularly strong is when some active bfq_queues belong to a higher-priority class than some other active bfq_queues. Unfortunately, this important case is not considered at all in the code for detecting asymmetric scenarios. This commit adds the missing logic. Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-01-14block, bfq: fix comments on __bfq_deactivate_entityPaolo Valente
Comments on function __bfq_deactivate_entity contains two imprecise or wrong statements: 1) The function performs the deactivation of the entity. 2) The function must be invoked only if the entity is on a service tree. This commits replaces both statements with the correct ones: 1) The functions updates sched_data and service trees for the entity, so as to represent entity as inactive (which is only part of the steps needed for the deactivation of the entity). 2) The function must be invoked on every entity being deactivated. Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-12-07block, bfq: fix decrement of num_active_groupsPaolo Valente
Since commit '2d29c9f89fcd ("block, bfq: improve asymmetric scenarios detection")', if there are process groups with I/O requests waiting for completion, then BFQ tags the scenario as 'asymmetric'. This detection is needed for preserving service guarantees (for details, see comments on the computation * of the variable asymmetric_scenario in the function bfq_better_to_idle). Unfortunately, commit '2d29c9f89fcd ("block, bfq: improve asymmetric scenarios detection")' contains an error exactly in the updating of the number of groups with I/O requests waiting for completion: if a group has more than one descendant process, then the above number of groups, which is renamed from num_active_groups to a more appropriate num_groups_with_pending_reqs by this commit, may happen to be wrongly decremented multiple times, namely every time one of the descendant processes gets all its pending I/O requests completed. A correct, complete solution should work as follows. Consider a group that is inactive, i.e., that has no descendant process with pending I/O inside BFQ queues. Then suppose that num_groups_with_pending_reqs is still accounting for this group, because the group still has some descendant process with some I/O request still in flight. num_groups_with_pending_reqs should be decremented when the in-flight request of the last descendant process is finally completed (assuming that nothing else has changed for the group in the meantime, in terms of composition of the group and active/inactive state of child groups and processes). To accomplish this, an additional pending-request counter must be added to entities, and must be updated correctly. To avoid this additional field and operations, this commit resorts to the following tradeoff between simplicity and accuracy: for an inactive group that is still counted in num_groups_with_pending_reqs, this commit decrements num_groups_with_pending_reqs when the first descendant process of the group remains with no request waiting for completion. This simplified scheme provides a fix to the unbalanced decrements introduced by 2d29c9f89fcd. Since this error was also caused by lack of comments on this non-trivial issue, this commit also adds related comments. Fixes: 2d29c9f89fcd ("block, bfq: improve asymmetric scenarios detection") Reported-by: Steven Barrett <steven@liquorix.net> Tested-by: Steven Barrett <steven@liquorix.net> Tested-by: Lucjan Lucjanov <lucjan.lucjanov@gmail.com> Reviewed-by: Federico Motta <federico@willer.it> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-25block, bfq: fix asymmetric scenarios detectionFederico Motta
Since commit 2d29c9f89fcd ("block, bfq: improve asymmetric scenarios detection"), a scenario is defined asymmetric when one of the following conditions holds: - active bfq_queues have different weights - one or more group of entities (bfq_queue or other groups of entities) are active bfq grants fairness and low latency also in such asymmetric scenarios, by plugging the dispatching of I/O if the bfq_queue in service happens to be temporarily idle. This plugging may lower throughput, so it is important to do it only when strictly needed. By mistake, in commit '2d29c9f89fcd' ("block, bfq: improve asymmetric scenarios detection") the num_active_groups counter was firstly incremented and subsequently decremented at any entity (group or bfq_queue) weight change. This is useless, because only transitions from active to inactive and vice versa matter for that counter. Unfortunately this is also incorrect in the following case: the entity at issue is a bfq_queue and it is under weight raising. In fact in this case there is a spurious increment of the num_active_groups counter. This spurious increment may cause scenarios to be wrongly detected as asymmetric, thus causing useless plugging and loss of throughput. This commit fixes this issue by simply removing the above useless and wrong increments and decrements. Fixes: 2d29c9f89fcd ("block, bfq: improve asymmetric scenarios detection") Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Signed-off-by: Federico Motta <federico@willer.it> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-13block, bfq: improve asymmetric scenarios detectionFederico Motta
bfq defines as asymmetric a scenario where an active entity, say E (representing either a single bfq_queue or a group of other entities), has a higher weight than some other entities. If the entity E does sync I/O in such a scenario, then bfq plugs the dispatch of the I/O of the other entities in the following situation: E is in service but temporarily has no pending I/O request. In fact, without this plugging, all the times that E stops being temporarily idle, it may find the internal queues of the storage device already filled with an out-of-control number of extra requests, from other entities. So E may have to wait for the service of these extra requests, before finally having its own requests served. This may easily break service guarantees, with E getting less than its fair share of the device throughput. Usually, the end result is that E gets the same fraction of the throughput as the other entities, instead of getting more, according to its higher weight. Yet there are two other more subtle cases where E, even if its weight is actually equal to or even lower than the weight of any other active entities, may get less than its fair share of the throughput in case the above I/O plugging is not performed: 1. other entities issue larger requests than E; 2. other entities contain more active child entities than E (or in general tend to have more backlog than E). In the first case, other entities may get more service than E because they get larger requests, than those of E, served during the temporary idle periods of E. In the second case, other entities get more service because, by having many child entities, they have many requests ready for dispatching while E is temporarily idle. This commit addresses this issue by extending the definition of asymmetric scenario: a scenario is asymmetric when - active entities representing bfq_queues have differentiated weights, as in the original definition or (inclusive) - one or more entities representing groups of entities are active. This broader definition makes sure that I/O plugging will be performed in all the above cases, provided that there is at least one active group. Of course, this definition is very coarse, so it will trigger I/O plugging also in cases where it is not needed, such as, e.g., multiple active entities with just one child each, and all with the same I/O-request size. The reason for this coarse definition is just that a finer-grained definition would be rather heavy to compute. On the opposite end, even this new definition does not trigger I/O plugging in all cases where there is no active group, and all bfq_queues have the same weight. So, in these cases some unfairness may occur if there are asymmetries in I/O-request sizes. We made this choice because I/O plugging may lower throughput, and probably a user that has not created any group cares more about throughput than about perfect fairness. At any rate, as for possible applications that may care about service guarantees, bfq already guarantees a high responsiveness and a low latency to soft real-time applications automatically. Signed-off-by: Federico Motta <federico@willer.it> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-09-14block, bfq: correctly charge and reset entity service in all casesPaolo Valente
BFQ schedules entities (which represent either per-process queues or groups of queues) as a function of their timestamps. In particular, as a function of their (virtual) finish times. The finish time of an entity is computed as a function of the budget assigned to the entity, assuming, tentatively, that the entity, once in service, will receive an amount of service equal to its budget. Then, when the entity is expired because it finishes to be served, this finish time is updated as a function of the actual service received by the entity. This allows the entity to be correctly charged with only the service received, and then to be correctly re-scheduled. Yet an entity may receive service also while not being the entity in service (in the scheduling environment of its parent entity), for several reasons. If the entity remains with no backlog while receiving this 'unofficial' service, then it is expired. Also on such an expiration, the finish time of the entity should be updated to account for only the service actually received by the entity. Unfortunately, such an update is not performed for an entity expiring without being the entity in service. In a similar vein, the service counter of the entity in service is reset when the entity is expired, to be ready to be used for next service cycle. This reset too should be performed also in case an entity is expired because it remains empty after receiving service while not being the entity in service. But in this case the reset is not performed. This commit performs the above update of the finish time and reset of the service received, also for an entity expiring while not being the entity in service. Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-08-16block, bfq: improve code of bfq_bfqq_charge_timePaolo Valente
bfq_bfqq_charge_time contains some lengthy and redundant code. This commit trims and condenses that code. Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-08-16block, bfq: always update the budget of an entity when neededPaolo Valente
When the next child entity to serve changes for a given parent entity, the budget of that parent entity must be updated accordingly. Unfortunately, this update is not performed, by mistake, for the entities that happen to switch from having no child entity to serve, to having one child entity to serve. Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-07-09block, bfq: fix service being wrongly set to zero in case of preemptionPaolo Valente
If - a bfq_queue Q preempts another queue, because one request of Q arrives in time, - but, after this preemption, Q is not the queue that is set in service, then Q->entity.service is set to 0 when Q is eventually set in service. But Q should have continued receiving service with its old budget (which is why preemption has occurred) and its old service. This commit addresses this issue by resetting service on queue real expiration. Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-07-09block, bfq: add/remove entity weights correctlyPaolo Valente
To keep I/O throughput high as often as possible, BFQ performs I/O-dispatch plugging (aka device idling) only when beneficial exactly for throughput, or when needed for service guarantees (low latency, fairness). An important case where the latter condition holds is when the scenario is 'asymmetric' in terms of weights: i.e., when some bfq_queue or whole group of queues has a higher weight, and thus has to receive more service, than other queues or groups. Without dispatch plugging, lower-weight queues/groups may unjustly steal bandwidth to higher-weight queues/groups. To detect asymmetric scenarios, BFQ checks some sufficient conditions. One of these conditions is that active groups have different weights. BFQ controls this condition by maintaining a special set of unique weights of active groups (group_weights_tree). To this purpose, in the function bfq_active_insert/bfq_active_extract BFQ adds/removes the weight of a group to/from this set. Unfortunately, the function bfq_active_extract may happen to be invoked also for a group that is still active (to preserve the correct update of the next queue to serve, see comments in function bfq_no_longer_next_in_service() for details). In this case, removing the weight of the group makes the set group_weights_tree inconsistent. Service-guarantee violations follow. This commit addresses this issue by moving group_weights_tree insertions from their previous location (in bfq_active_insert) into the function __bfq_activate_entity, and by moving group_weights_tree extractions from bfq_active_extract to when the entity that represents a group remains throughly idle, i.e., with no request either enqueued or dispatched. Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-18block, bfq: limit sectors served with interactive weight raisingPaolo Valente
To maximise responsiveness, BFQ raises the weight, and performs device idling, for bfq_queues associated with processes deemed as interactive. In particular, weight raising has a maximum duration, equal to the time needed to start a large application. If a weight-raised process goes on doing I/O beyond this maximum duration, it loses weight-raising. This mechanism is evidently vulnerable to the following false positives: I/O-bound applications that will go on doing I/O for much longer than the duration of weight-raising. These applications have basically no benefit from being weight-raised at the beginning of their I/O. On the opposite end, while being weight-raised, these applications a) unjustly steal throughput to applications that may truly need low latency; b) make BFQ uselessly perform device idling; device idling results in loss of device throughput with most flash-based storage, and may increase latencies when used purposelessly. This commit adds a countermeasure to reduce both the above problems. To introduce this countermeasure, we provide the following extra piece of information (full details in the comments added by this commit). During the start-up of the large application used as a reference to set the duration of weight-raising, involved processes transfer at most ~110K sectors each. Accordingly, a process initially deemed as interactive has no right to be weight-raised any longer, once transferred 110K sectors or more. Basing on this consideration, this commit early-ends weight-raising for a bfq_queue if the latter happens to have received an amount of service at least equal to 110K sectors (actually, a little bit more, to keep a safety margin). I/O-bound applications that reach a high throughput, such as file copy, get to this threshold much before the allowed weight-raising period finishes. Thus this early ending of weight-raising reduces the amount of time during which these applications cause the problems described above. Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-05block, bfq: let a queue be merged only shortly after starting I/OPaolo Valente
In BFQ and CFQ, two processes are said to be cooperating if they do I/O in such a way that the union of their I/O requests yields a sequential I/O pattern. To get such a sequential I/O pattern out of the non-sequential pattern of each cooperating process, BFQ and CFQ merge the queues associated with these processes. In more detail, cooperating processes, and thus their associated queues, usually start, or restart, to do I/O shortly after each other. This is the case, e.g., for the I/O threads of KVM/QEMU and of the dump utility. Basing on this assumption, this commit allows a bfq_queue to be merged only during a short time interval (100ms) after it starts, or re-starts, to do I/O. This filtering provides two important benefits. First, it greatly reduces the probability that two non-cooperating processes have their queues merged by mistake, if they just happen to do I/O close to each other for a short time interval. These spurious merges cause loss of service guarantees. A low-weight bfq_queue may unjustly get more than its expected share of the throughput: if such a low-weight queue is merged with a high-weight queue, then the I/O for the low-weight queue is served as if the queue had a high weight. This may damage other high-weight queues unexpectedly. For instance, because of this issue, lxterminal occasionally took 7.5 seconds to start, instead of 6.5 seconds, when some sequential readers and writers did I/O in the background on a FUJITSU MHX2300BT HDD. The reason is that the bfq_queues associated with some of the readers or the writers were merged with the high-weight queues of some processes that had to do some urgent but little I/O. The readers then exploited the inherited high weight for all or most of their I/O, during the start-up of terminal. The filtering introduced by this commit eliminated any outlier caused by spurious queue merges in our start-up time tests. This filtering also provides a little boost of the throughput sustainable by BFQ: 3-4%, depending on the CPU. The reason is that, once a bfq_queue cannot be merged any longer, this commit makes BFQ stop updating the data needed to handle merging for the queue. Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Angelo Ruocco <angeloruocco90@gmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-11-14block, bfq: update blkio stats outside the scheduler lockPaolo Valente
bfq invokes various blkg_*stats_* functions to update the statistics contained in the special files blkio.bfq.* in the blkio controller groups, i.e., the I/O accounting related to the proportional-share policy provided by bfq. The execution of these functions takes a considerable percentage, about 40%, of the total per-request execution time of bfq (i.e., of the sum of the execution time of all the bfq functions that have to be executed to process an I/O request from its creation to its destruction). This reduces the request-processing rate sustainable by bfq noticeably, even on a multicore CPU. In fact, the bfq functions that invoke blkg_*stats_* functions cannot be executed in parallel with the rest of the code of bfq, because both are executed under the same same per-device scheduler lock. To reduce this slowdown, this commit moves, wherever possible, the invocation of these functions (more precisely, of the bfq functions that invoke blkg_*stats_* functions) outside the critical sections protected by the scheduler lock. With this change, and with all blkio.bfq.* statistics enabled, the throughput grows, e.g., from 250 to 310 KIOPS (+25%) on an Intel i7-4850HQ, in case of 8 threads doing random I/O in parallel on null_blk, with the latter configured with 0 latency. We obtained the same or higher throughput boosts, up to +30%, with other processors (some figures are reported in the documentation). For our tests, we used the script [1], with which our results can be easily reproduced. NOTE. This commit still protects the invocation of blkg_*stats_* functions with the request_queue lock, because the group these functions are invoked on may otherwise disappear before or while these functions are executed. Fortunately, tests without even this lock show, by difference, that the serialization caused by this lock has a little impact (at most ~5% of throughput reduction). [1] https://github.com/Algodev-github/IOSpeed Tested-by: Lee Tibbert <lee.tibbert@gmail.com> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Luca Miccio <lucmiccio@gmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-08-31block, bfq: guarantee update_next_in_service always returns an eligible entityPaolo Valente
If the function bfq_update_next_in_service is invoked as a consequence of the activation or requeueing of an entity, say E, then it doesn't invoke bfq_lookup_next_entity to get the next-in-service entity. In contrast, it follows a shorter path: if E happens to be eligible (see commit "bfq-sq-mq: make lookup_next_entity push up vtime on expirations" for details on eligibility) and to have a lower virtual finish time than the current candidate as next-in-service entity, then E directly becomes the next-in-service entity. Unfortunately, there is a corner case for which this shorter path makes bfq_update_next_in_service choose a non eligible entity: it occurs if both E and the current next-in-service entity happen to be non eligible when bfq_update_next_in_service is invoked. In this case, E is not set as next-in-service, and, since bfq_lookup_next_entity is not invoked, the state of the parent entity is not updated so as to end up with an eligible entity as the proper next-in-service entity. In this respect, next-in-service is actually allowed to be non eligible while some queue is in service: since no system-virtual-time push-up can be performed in that case (see again commit "bfq-sq-mq: make lookup_next_entity push up vtime on expirations" for details), next-in-service is chosen, speculatively, as a function of the possible value that the system virtual time may get after a push up. But the correctness of the schedule breaks if next-in-service is still a non eligible entity when it is time to set in service the next entity. Unfortunately, this may happen in the above corner case. This commit fixes this problem by making bfq_update_next_in_service invoke bfq_lookup_next_entity not only if the above shorter path cannot be taken, but also if the shorter path is taken but fails to yield an eligible next-in-service entity. Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Tested-by: Lee Tibbert <lee.tibbert@gmail.com> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-08-31block, bfq: remove direct switch to an entity in higher classPaolo Valente
If the function bfq_update_next_in_service is invoked as a consequence of the activation or requeueing of an entity, say E, and finds out that E belongs to a higher-priority class than that of the current next-in-service entity, then it sets next_in_service directly to E. But this may lead to anomalous schedules, because E may happen not be eligible for service, because its virtual start time is higher than the system virtual time for its service tree. This commit addresses this issue by simply removing this direct switch. Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Tested-by: Lee Tibbert <lee.tibbert@gmail.com> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-08-31block, bfq: make lookup_next_entity push up vtime on expirationsPaolo Valente
To provide a very smooth service, bfq starts to serve a bfq_queue only if the queue is 'eligible', i.e., if the same queue would have started to be served in the ideal, perfectly fair system that bfq simulates internally. This is obtained by associating each queue with a virtual start time, and by computing a special system virtual time quantity: a queue is eligible only if the system virtual time has reached the virtual start time of the queue. Finally, bfq guarantees that, when a new queue must be set in service, there is always at least one eligible entity for each active parent entity in the scheduler. To provide this guarantee, the function __bfq_lookup_next_entity pushes up, for each parent entity on which it is invoked, the system virtual time to the minimum among the virtual start times of the entities in the active tree for the parent entity (more precisely, the push up occurs if the system virtual time happens to be lower than all such virtual start times). There is however a circumstance in which __bfq_lookup_next_entity cannot push up the system virtual time for a parent entity, even if the system virtual time is lower than the virtual start times of all the child entities in the active tree. It happens if one of the child entities is in service. In fact, in such a case, there is already an eligible entity, the in-service one, even if it may not be not present in the active tree (because in-service entities may be removed from the active tree). Unfortunately, in the last re-design of the hierarchical-scheduling engine, the reset of the pointer to the in-service entity for a given parent entity--reset to be done as a consequence of the expiration of the in-service entity--always happens after the function __bfq_lookup_next_entity has been invoked. This causes the function to think that there is still an entity in service for the parent entity, and then that the system virtual time cannot be pushed up, even if actually such a no-more-in-service entity has already been properly reinserted into the active tree (or in some other tree if no more active). Yet, the system virtual time *had* to be pushed up, to be ready to correctly choose the next queue to serve. Because of the lack of this push up, bfq may wrongly set in service a queue that had been speculatively pre-computed as the possible next-in-service queue, but that would no more be the one to serve after the expiration and the reinsertion into the active trees of the previously in-service entities. This commit addresses this issue by making __bfq_lookup_next_entity properly push up the system virtual time if an expiration is occurring. Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Tested-by: Lee Tibbert <lee.tibbert@gmail.com> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-07-29block, bfq: consider also in_service_entity to state whether an entity is activePaolo Valente
Groups of BFQ queues are represented by generic entities in BFQ. When a queue belonging to a parent entity is deactivated, the parent entity may need to be deactivated too, in case the deactivated queue was the only active queue for the parent entity. This deactivation may need to be propagated upwards if the entity belongs, in its turn, to a further higher-level entity, and so on. In particular, the upward propagation of deactivation stops at the first parent entity that remains active even if one of its child entities has been deactivated. To decide whether the last non-deactivation condition holds for a parent entity, BFQ checks whether the field next_in_service is still not NULL for the parent entity, after the deactivation of one of its child entity. If it is not NULL, then there are certainly other active entities in the parent entity, and deactivations can stop. Unfortunately, this check misses a corner case: if in_service_entity is not NULL, then next_in_service may happen to be NULL, although the parent entity is evidently active. This happens if: 1) the entity pointed by in_service_entity is the only active entity in the parent entity, and 2) according to the definition of next_in_service, the in_service_entity cannot be considered as next_in_service. See the comments on the definition of next_in_service for details on this second point. Hitting the above corner case causes crashes. To address this issue, this commit: 1) Extends the above check on only next_in_service to controlling both next_in_service and in_service_entity (if any of them is not NULL, then no further deactivation is performed) 2) Improves the (important) comments on how next_in_service is defined and updated; in particular it fixes a few rather obscure paragraphs Reported-by: Eric Wheeler <bfq-sched@lists.ewheeler.net> Reported-by: Rick Yiu <rick_yiu@htc.com> Reported-by: Tom X Nguyen <tom81094@gmail.com> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Tested-by: Eric Wheeler <bfq-sched@lists.ewheeler.net> Tested-by: Rick Yiu <rick_yiu@htc.com> Tested-by: Laurentiu Nicola <lnicola@dend.ro> Tested-by: Tom X Nguyen <tom81094@gmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-07-29block, bfq: reset in_service_entity if it becomes idlePaolo Valente
BFQ implements hierarchical scheduling by representing each group of queues with a generic parent entity. For each parent entity, BFQ maintains an in_service_entity pointer: if one of the child entities happens to be in service, in_service_entity points to it. The resetting of these pointers happens only on queue expirations: when the in-service queue is expired, i.e., stops to be the queue in service, BFQ resets all in_service_entity pointers along the parent-entity path from this queue to the root entity. Functions handling the scheduling of entities assume, naturally, that in-service entities are active, i.e., have pending I/O requests (or, as a special case, even if they have no pending requests, they are expected to receive a new request very soon, with the scheduler idling the storage device while waiting for such an event). Unfortunately, the above resetting scheme of the in_service_entity pointers may cause this assumption to be violated. For example, the in-service queue may happen to remain without requests because of a request merge. In this case the queue does become idle, and all related data structures are updated accordingly. But in_service_entity still points to the queue in the parent entity. This inconsistency may even propagate to higher-level parent entities, if they happen to become idle as well, as a consequence of the leaf queue becoming idle. For this queue and parent entities, scheduling functions have an undefined behaviour, and, as reported, may easily lead to kernel crashes or hangs. This commit addresses this issue by simply resetting the in_service_entity field also when it is detected to point to an entity becoming idle (regardless of why the entity becomes idle). Reported-by: Laurentiu Nicola <lnicola@dend.ro> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Tested-by: Laurentiu Nicola <lnicola@dend.ro> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-07-12bfq: fix typos in comments about B-WF2Q+ algorithmHou Tao
The start time of eligible entity should be less than or equal to the current virtual time, and the entity in idle tree has a finish time being greater than the current virtual time. Signed-off-by: Hou Tao <houtao1@huawei.com> Reviewed-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-07-03block, bfq: don't change ioprio class for a bfq_queue on a service treePaolo Valente
On each deactivation or re-scheduling (after being served) of a bfq_queue, BFQ invokes the function __bfq_entity_update_weight_prio(), to perform pending updates of ioprio, weight and ioprio class for the bfq_queue. BFQ also invokes this function on I/O-request dispatches, to raise or lower weights more quickly when needed, thereby improving latency. However, the entity representing the bfq_queue may be on the active (sub)tree of a service tree when this happens, and, although with a very low probability, the bfq_queue may happen to also have a pending change of its ioprio class. If both conditions hold when __bfq_entity_update_weight_prio() is invoked, then the entity moves to a sort of hybrid state: the new service tree for the entity, as returned by bfq_entity_service_tree(), differs from service tree on which the entity still is. The functions that handle activations and deactivations of entities do not cope with such a hybrid state (and would need to become more complex to cope). This commit addresses this issue by just making __bfq_entity_update_weight_prio() not perform also a possible pending change of ioprio class, when invoked on an I/O-request dispatch for a bfq_queue. Such a change is thus postponed to when __bfq_entity_update_weight_prio() is invoked on deactivation or re-scheduling of the bfq_queue. Reported-by: Marco Piazza <mpiazza@gmail.com> Reported-by: Laurentiu Nicola <lnicola@dend.ro> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Tested-by: Marco Piazza <mpiazza@gmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-05-10block, bfq: use pointer entity->sched_data only if setPaolo Valente
In the function __bfq_deactivate_entity, the pointer entity->sched_data could happen to be used before being properly initialized. This led to a NULL pointer dereference. This commit fixes this bug by just using this pointer only where it is safe to do so. Reported-by: Tom Harrison <l12436.tw@gmail.com> Tested-by: Tom Harrison <l12436.tw@gmail.com> Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@fb.com>
2017-04-19block, bfq: split bfq-iosched.c into multiple source filesPaolo Valente
The BFQ I/O scheduler features an optimal fair-queuing (proportional-share) scheduling algorithm, enriched with several mechanisms to boost throughput and reduce latency for interactive and real-time applications. This makes BFQ a large and complex piece of code. This commit addresses this issue by splitting BFQ into three main, independent components, and by moving each component into a separate source file: 1. Main algorithm: handles the interaction with the kernel, and decides which requests to dispatch; it uses the following two further components to achieve its goals. 2. Scheduling engine (Hierarchical B-WF2Q+ scheduling algorithm): computes the schedule, using weights and budgets provided by the above component. 3. cgroups support: handles group operations (creation, destruction, move, ...). Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@fb.com>