summaryrefslogtreecommitdiff
path: root/arch/um/kernel/tlb.c
AgeCommit message (Collapse)Author
2008-02-05uml: style fixes in arch/um/kernelJeff Dike
Joe Perches noticed some printks in smp.c that needed fixing. While I was in there, I did the usual tidying in arch/um/kernel, which should be fairly style-clean at this point: copyright updates emacs formatting comments removal include tidying style fixes Cc: Joe Perches <joe@perches.com> Signed-off-by: Jeff Dike <jdike@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05uml: customize tlb.hJeff Dike
Customize the hooks in tlb.h to optimize TLB flushing some more. Add start and end fields to tlb_gather_mmu, which are used to limit the address space range scanned when a region is unmapped. The interfaces which just free page tables, without actually changing mappings, don't need to cause a TLB flush. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05uml: 64-bit tlb fixesJeff Dike
Some 64-bit tlb fixes - moved pmd_page_vaddr to pgtable.h since it's the same for both 2-level and 3-level page tables fixed a bogus cast on pud_page_vaddr made the address checking in update_*_range more careful Signed-off-by: Jeff Dike <jdike@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05uml: cover stubs with a VMAJeff Dike
Give the stubs a VMA. This allows the removal of a truly nasty kludge to make sure that mm->nr_ptes was correct in exit_mmap. The underlying problem was always that the stubs, which have ptes, and thus allocated a page table, weren't covered by a VMA. This patch fixes that by using install_special_mapping in arch_dup_mmap and activate_context to create the VMA. The stubs have to be moved, since shift_arg_pages seems to assume that the stack is the only VMA present at that point during exec, and uses vma_adjust to fiddle its VMA. However, that extends the stub VMA by the amount removed from the stack VMA. To avoid this problem, the stubs were moved to a different fixed location at the start of the address space. The init_stub_pte calls were moved from init_new_context to arch_dup_mmap because I was occasionally seeing arch_dup_mmap not being called, causing exit_mmap to die. Rather than figure out what was really happening, I decided it was cleaner to just move the calls so that there's no doubt that both the pte and VMA creation happen, no matter what. arch_exit_mmap is used to clear the stub ptes at exit time. The STUB_* constants in as-layout.h no longer depend on UM_TASK_SIZE, that that definition is removed, along with the comments complaining about gcc. Because the stubs are no longer at the top of the address space, some care is needed while flushing TLBs. update_pte_range checks for addresses in the stub range and skips them. flush_thread now issues two unmaps, one for the range before STUB_START and one for the range after STUB_END. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05uml: clean up TASK_SIZE usageJeff Dike
Clean up the calculation and use of the usable address space size on the host. task_size is gone, replaced with TASK_SIZE, which is calculated from CONFIG_TOP_ADDR. get_kmem_end and set_task_sizes_skas are also gone. host_task_size, which refers to the entire address space usable by the UML kernel and which may be larger than the address space usable by a UML process, since that has to end on a pgdir boundary, is replaced by CONFIG_TOP_ADDR. STACK_TOP is now TASK_SIZE minus the two stub pages. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05uml: header untanglingJeff Dike
Untangle UML headers somewhat and add some includes where they were needed explicitly, but gotten accidentally via some other header. arch/um/include/um_uaccess.h loses asm/fixmap.h because it uses no fixmap stuff and gains elf.h, because it needs FIXADDR_USER_*, and archsetjmp.h, because it needs jmp_buf. pmd_alloc_one is uninlined because it needs mm_struct, and that's inconvenient to provide in asm-um/pgtable-3level.h. elf_core_copy_fpregs is also uninlined from elf-i386.h and elf-x86_64.h, which duplicated the code anyway, to arch/um/kernel/process.c, so that the reference to current_thread doesn't pull sched.h or anything related into asm/elf.h. arch/um/sys-i386/ldt.c, arch/um/kernel/tlb.c and arch/um/kernel/skas/uaccess.c got sched.h because they dereference task_structs. Its includes of linux and asm headers got turned from "" to <>. arch/um/sys-i386/bug.c gets asm/errno.h because it needs errno constants. asm/elf-i386 gets asm/user.h because it needs user_regs_struct. asm/fixmap.h gets page.h because it needs PAGE_SIZE and PAGE_MASK and system.h for BUG_ON. asm/pgtable doesn't need sched.h. asm/processor-generic.h defined mm_segment_t, but didn't use it. So, that definition is moved to uaccess.h, which defines a bunch of mm_segment_t-related stuff. thread_info.h uses mm_segment_t, and includes uaccess.h, which causes a recursion. So, the definition is placed above the include of thread_info. in uaccess.h. thread_info.h also gets page.h because it needs PAGE_SIZE. ObCheckpatchViolationJustification - I'm not adding a typedef; I'm moving mm_segment_t from one place to another. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16uml: fix stub address calculationsJeff Dike
The calculation of CONFIG_STUB_CODE and CONFIG_STUB_DATA didn't take into account anything but 3G/1G and 2G/2G, leaving the other vmsplits out in the cold. I'd rather not duplicate the four known host vmsplit cases for each of these symbols. I'd also like to calculate them based on the highest userspace address. The Kconfig language seems not to allow calculation of hex constants, so I moved this to as-layout.h. CONFIG_STUB_CODE, CONFIG_STUB_DATA, and CONFIG_STUB_START are now gone. In their place are STUB_CODE, STUB_DATA, and STUB_START in as-layout.h. i386 and x86_64 seem to differ as to whether an unadorned constant is an int or a long, so I cast them to unsigned long so they can be printed consistently. However, they are also used in stub.S, where C types don't work so well. So, there are ASM_ versions of these constants for use in stub.S. I also ifdef-ed the non-asm-friendly portion of as-layout.h. With this in place, most of the rest of this patch is changing CONFIG_STUB_* to STUB_*, except in stub.S, where they are changed to ASM_STUB_*. defconfig has the old symbols deleted. I also print these addresses out in case there is any problem mapping them on the host. The two stub.S files had some trailing whitespace, so that is cleaned up here. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Jeff Dike <jdike@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16uml: clean up tlb flush pathJeff Dike
Tidy the tlb flushing code. With tt mode gone, there is no reason to have the capability to have called directly from do_mmap, do_mprotect, and do_munmap, rather than calling a function pointer that it is given. There was a large amount of data that was passed from function to function, being used at the lowest level, without being changed. This stuff is now encapsulated in a structure which is initialized at the top layer and passed down. This simplifies the code, reduces the amount of code needed to pass the parameters around, and saves on stack space. A somewhat more subtle change is the meaning of the current operation index. It used to start at -1, being pre-incremented when adding an operation. It now starts at 0, being post-incremented, with associated adjustments of +/- 1 on comparisons. In addition, tlb.h contained a couple of declarations which had no users outside of tlb.c, so they could be moved or deleted. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16uml: fold mmu_context_skas into mm_contextJeff Dike
This patch folds mmu_context_skas into struct mm_context, changing all users of these structures as needed. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16uml: style fixes pass 3Jeff Dike
Formatting changes in the files which have been changed in the course of folding foo_skas functions into their callers. These include: copyright updates header file trimming style fixes adding severity to printks These changes should be entirely non-functional. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16uml: remove code made redundant by CHOOSE_MODE removalJeff Dike
This patch makes a number of simplifications enabled by the removal of CHOOSE_MODE. There were lots of functions that looked like int foo(args){ foo_skas(args); } The bodies of foo_skas are now folded into foo, and their declarations (and sometimes entire header files) are deleted. In addition, the union uml_pt_regs, which was a union between the tt and skas register formats, is now a struct, with the tt-mode arm of the union being removed. It turns out that usr2_handler was unused, so it is gone. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16uml: throw out CHOOSE_MODEJeff Dike
The next stage after removing code which depends on CONFIG_MODE_TT is removing the CHOOSE_MODE abstraction, which provided both compile-time and run-time branching to either tt-mode or skas-mode code. This patch removes choose-mode.h and all inclusions of it, and replaces all CHOOSE_MODE invocations with the skas branch. This leaves a number of trivial functions which will be dealt with in a later patch. There are some changes in the uaccess and tls support which go somewhat beyond this and eliminate some of the now-redundant functions. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07uml: more page fault path trimmingJeff Dike
More trimming of the page fault path. Permissions are passed around in a single int rather than one bit per int. The permission values are copied from libc so that they can be passed to mmap and mprotect without any further conversion. The register sets used by do_syscall_stub and copy_context_skas0 are initialized once, at boot time, rather than once per call. wait_stub_done checks whether it is getting the signals it expects by comparing the wait status to a mask containing bits for the signals of interest rather than comparing individually to the signal numbers. It also has one check for a wait failure instead of two. The caller is expected to do the initial continue of the stub. This gets rid of an argument and some logic. The fname argument is gone, as that can be had from a stack trace. user_signal() is collapsed into userspace() as it is basically one or two lines of code afterwards. The physical memory remapping stuff is gone, as it is unused. flush_tlb_page is inlined. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07uml: eliminate a piece of debugging codeJeff Dike
I missed removing another piece of debugging in an earlier patch. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07uml: speed page fault pathJeff Dike
Give the page fault code a specialized path. There is only one page to look at, so there's no point in going into the general page table walking code. There's only going to be one host operation, so there are no opportunities for merging. So, we go straight to the pte we want, figure out what needs doing, and do it. While I was in here, I fixed the wart where the address passed to unmap was a void *, but an unsigned long to map and protect. This gives me just under 10% on a kernel build. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07uml: remove debugging remnantsJeff Dike
I accidentally left the remnants of some debugging in an earlier patch. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07uml: speed up page table walkingJeff Dike
The previous page table walking code was horribly inefficient. This patch replaces it with code taken from elsewhere in the kernel. Forking from bash is now ~5% faster and page faults are handled ~10% faster. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07uml: remove user_util.hJeff Dike
user_util.h isn't needed any more, so delete it and remove all includes of it. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07uml: create as-layout.hJeff Dike
This patch moves all the the symbols defined in um_arch.c, which are mostly boundaries between different parts of the UML kernel address space, to a new header, as-layout.h. There are also a few things here which aren't really related to address space layout, but which don't really have a better place to go. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2006-09-26[PATCH] uml: Whitespace fixesJeff Dike
arch/um/kernel/tlb.c had some pretty serious whitespace problems. I also fixed some returns. Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-26[PATCH] uml: Use ARRAY_SIZE more assiduouslyJeff Dike
There were a bunch of missed ARRAY_SIZE opportunities. Also, some formatting fixes in the affected areas of code. Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-22[PATCH] uml: fix condition in tlb flushPaolo 'Blaisorblade' Giarrusso
Avoid setting w = 0 twice. Spotted this (trivial) thing which is needed for another patch. Signed-off-by: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it> Cc: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-17[PATCH] uml: move libc code out of mem_user.c and tempfile.cJeff Dike
The serial UML OS-abstraction layer patch (um/kernel dir). This moves all system calls from mem_user.c and tempfile.c files under os-Linux dir. Signed-off-by: Gennady Sharapov <Gennady.V.Sharapov@intel.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Cc: Paolo Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-05[PATCH] uml: skas0 stubs now check system call return valuesBodo Stroesser
Change syscall-stub's data to include a "expected retval". Stub now checks syscalls retval and aborts execution of syscall list, if retval != expected retval. run_syscall_stub prints the data of the failed syscall, using the data pointer and retval written by the stub to the beginning of the stack. one_syscall_stub is removed, to simplify code, because only some instructions are saved by one_syscall_stub, no host-syscall. Using the stub with additional data (modify_ldt via stub) is prepared also. Signed-off-by: Bodo Stroesser <bstroesser@fujitsu-siemens.com> Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-05[PATCH] uml: TLB operation batchingJeff Dike
This adds VM op batching to skas0. Rather than having a context switch to and from the userspace stub for each address space change, we write a number of operations to the stub data page and invoke a different stub which loops over them and executes them all in one go. The operations are stored as [ system call number, arg1, arg2, ... ] tuples. The set is terminated by a system call number of 0. Single operations, i.e. page faults, are handled in the old way, since that is slightly more efficient. For a kernel build, a minority (~1/4) of the operations are part of a set. These sets averaged ~100 in length, so for this quarter, the context switching overhead is greatly reduced. Signed-off-by: Jeff Dike <jdike@addtoit.com> Cc: Paolo Giarrusso <blaisorblade@yahoo.it> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-07[PATCH] uml: skas0 - separate kernel address space on stock hostsJeff Dike
UML has had two modes of operation - an insecure, slow mode (tt mode) in which the kernel is mapped into every process address space which requires no host kernel modifications, and a secure, faster mode (skas mode) in which the UML kernel is in a separate host address space, which requires a patch to the host kernel. This patch implements something very close to skas mode for hosts which don't support skas - I'm calling this skas0. It provides the security of the skas host patch, and some of the performance gains. The two main things that are provided by the skas patch, /proc/mm and PTRACE_FAULTINFO, are implemented in a way that require no host patch. For the remote address space changing stuff (mmap, munmap, and mprotect), we set aside two pages in the process above its stack, one of which contains a little bit of code which can call mmap et al. To update the address space, the system call information (system call number and arguments) are written to the stub page above the code. The %esp is set to the beginning of the data, the %eip is set the the start of the stub, and it repeatedly pops the information into its registers and makes the system call until it sees a system call number of zero. This is to amortize the cost of the context switch across multiple address space updates. When the updates are done, it SIGSTOPs itself, and the kernel process continues what it was doing. For a PTRACE_FAULTINFO replacement, we set up a SIGSEGV handler in the child, and let it handle segfaults rather than nullifying them. The handler is in the same page as the mmap stub. The second page is used as the stack. The handler reads cr2 and err from the sigcontext, sticks them at the base of the stack in a faultinfo struct, and SIGSTOPs itself. The kernel then reads the faultinfo and handles the fault. A complication on x86_64 is that this involves resetting the registers to the segfault values when the process is inside the kill system call. This breaks on x86_64 because %rcx will contain %rip because you tell SYSRET where to return to by putting the value in %rcx. So, this corrupts $rcx on return from the segfault. To work around this, I added an arch_finish_segv, which on x86 does nothing, but which on x86_64 ptraces the child back through the sigreturn. This causes %rcx to be restored by sigreturn and avoids the corruption. Ultimately, I think I will replace this with the trick of having it send itself a blocked signal which will be unblocked by the sigreturn. This will allow it to be stopped just after the sigreturn, and PTRACE_SYSCALLed without all the back-and-forth of PTRACE_SYSCALLing it through sigreturn. This runs on a stock host, so theoretically (and hopefully), tt mode isn't needed any more. We need to make sure that this is better in every way than tt mode, though. I'm concerned about the speed of address space updates and page fault handling, since they involve extra round-trips to the child. We can amortize the round-trip cost for large address space updates by writing all of the operations to the data page and having the child execute them all at the same time. This will help fork and exec, but not page faults, since they involve only one page. I can't think of any way to help page faults, except to add something like PTRACE_FAULTINFO to the host. There is PTRACE_SIGINFO, but UML doesn't use siginfo for SIGSEGV (or anything else) because there isn't enough information in the siginfo struct to handle page faults (the faulting operation type is missing). Adding that would make PTRACE_SIGINFO a usable equivalent to PTRACE_FAULTINFO. As for the code itself: - The system call stub is in arch/um/kernel/sys-$(SUBARCH)/stub.S. It is put in its own section of the binary along with stub_segv_handler in arch/um/kernel/skas/process.c. This is manipulated with run_syscall_stub in arch/um/kernel/skas/mem_user.c. syscall_stub will execute any system call at all, but it's only used for mmap, munmap, and mprotect. - The x86_64 stub calls sigreturn by hand rather than allowing the normal sigreturn to happen, because the normal sigreturn is a SA_RESTORER in UML's address space provided by libc. Needless to say, this is not available in the child's address space. Also, it does a couple of odd pops before that which restore the stack to the state it was in at the time the signal handler was called. - There is a new field in the arch mmu_context, which is now a union. This is the pid to be manipulated rather than the /proc/mm file descriptor. Code which deals with this now checks proc_mm to see whether it should use the usual skas code or the new code. - userspace_tramp is now used to create a new host process for every UML process, rather than one per UML processor. It checks proc_mm and ptrace_faultinfo to decide whether to map in the pages above its stack. - start_userspace now makes CLONE_VM conditional on proc_mm since we need separate address spaces now. - switch_mm_skas now just sets userspace_pid[0] to the new pid rather than PTRACE_SWITCH_MM. There is an addition to userspace which updates its idea of the pid being manipulated each time around the loop. This is important on exec, when the pid will change underneath userspace(). - The stub page has a pte, but it can't be mapped in using tlb_flush because it is part of tlb_flush. This is why it's required for it to be mapped in by userspace_tramp. Other random things: - The stub section in uml.lds.S is page aligned. This page is written out to the backing vm file in setup_physmem because it is mapped from there into user processes. - There's some confusion with TASK_SIZE now that there are a couple of extra pages that the process can't use. TASK_SIZE is considered by the elf code to be the usable process memory, which is reasonable, so it is decreased by two pages. This confuses the definition of USER_PGDS_IN_LAST_PML4, making it too small because of the rounding down of the uneven division. So we round it to the nearest PGDIR_SIZE rather than the lower one. - I added a missing PT_SYSCALL_ARG6_OFFSET macro. - um_mmu.h was made into a userspace-usable file. - proc_mm and ptrace_faultinfo are globals which say whether the host supports these features. - There is a bad interaction between the mm.nr_ptes check at the end of exit_mmap, stack randomization, and skas0. exit_mmap will stop freeing pages at the PGDIR_SIZE boundary after the last vma. If the stack isn't on the last page table page, the last pte page won't be freed, as it should be since the stub ptes are there, and exit_mmap will BUG because there is an unfreed page. To get around this, TASK_SIZE is set to the next lowest PGDIR_SIZE boundary and mm->nr_ptes is decremented after the calls to init_stub_pte. This ensures that we know the process stack (and all other process mappings) will be below the top page table page, and thus we know that mm->nr_ptes will be one too many, and can be decremented. Things that need fixing: - We may need better assurrences that the stub code is PIC. - The stub pte is set up in init_new_context_skas. - alloc_pgdir is probably the right place. Signed-off-by: Jeff Dike <jdike@addtoit.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-16Linux-2.6.12-rc2Linus Torvalds
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!