Age | Commit message (Collapse) | Author |
|
Commit eb7e7d76 "s390: Replace __get_cpu_var uses" broke machine check
handling.
We copy machine check information from per-cpu to a stack variable for
local processing. Next we should zap the per-cpu variable, not the
stack variable.
Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
Pull percpu consistent-ops changes from Tejun Heo:
"Way back, before the current percpu allocator was implemented, static
and dynamic percpu memory areas were allocated and handled separately
and had their own accessors. The distinction has been gone for many
years now; however, the now duplicate two sets of accessors remained
with the pointer based ones - this_cpu_*() - evolving various other
operations over time. During the process, we also accumulated other
inconsistent operations.
This pull request contains Christoph's patches to clean up the
duplicate accessor situation. __get_cpu_var() uses are replaced with
with this_cpu_ptr() and __this_cpu_ptr() with raw_cpu_ptr().
Unfortunately, the former sometimes is tricky thanks to C being a bit
messy with the distinction between lvalues and pointers, which led to
a rather ugly solution for cpumask_var_t involving the introduction of
this_cpu_cpumask_var_ptr().
This converts most of the uses but not all. Christoph will follow up
with the remaining conversions in this merge window and hopefully
remove the obsolete accessors"
* 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (38 commits)
irqchip: Properly fetch the per cpu offset
percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t -fix
ia64: sn_nodepda cannot be assigned to after this_cpu conversion. Use __this_cpu_write.
percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t
Revert "powerpc: Replace __get_cpu_var uses"
percpu: Remove __this_cpu_ptr
clocksource: Replace __this_cpu_ptr with raw_cpu_ptr
sparc: Replace __get_cpu_var uses
avr32: Replace __get_cpu_var with __this_cpu_write
blackfin: Replace __get_cpu_var uses
tile: Use this_cpu_ptr() for hardware counters
tile: Replace __get_cpu_var uses
powerpc: Replace __get_cpu_var uses
alpha: Replace __get_cpu_var
ia64: Replace __get_cpu_var uses
s390: cio driver &__get_cpu_var replacements
s390: Replace __get_cpu_var uses
mips: Replace __get_cpu_var uses
MIPS: Replace __get_cpu_var uses in FPU emulator.
arm: Replace __this_cpu_ptr with raw_cpu_ptr
...
|
|
The vector extension introduces 32 128-bit vector registers and a set of
instruction to operate on the vector registers.
The kernel can control the use of vector registers for the problem state
program with a bit in control register 0. Once enabled for a process the
kernel needs to retain the content of the vector registers on context
switch. The signal frame is extended to include the vector registers.
Two new register sets NT_S390_VXRS_LOW and NT_S390_VXRS_HIGH are added
to the regset interface for the debugger and core dumps.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
this_cpu_inc(y)
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
CC: linux390@de.ibm.com
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
The oi and ni instructions used in entry[64].S to set and clear bits
in the thread-flags are not guaranteed to be atomic in regard to other
CPUs. Split the TIF bits into CPU, pt_regs and thread-info specific
bits. Updates on the TIF bits are done with atomic instructions,
updates on CPU and pt_regs bits are done with non-atomic instructions.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
Always use the S390_lowcore.clock_comparator field to revalidate
the clock comparator CPU register after a machine check. This avoids
an unnecssary external interrupt after a machine check if no timer
is pending.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
Fix name clash with some common code device drivers and add "tod"
to all tod clock access function names.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
Now that irq sum accounting for /proc/stat's "intr" line works again we
have the oddity that the sum field (first field) contains only the sum
of the second (external irqs) and third field (I/O interrupts).
The reason for that is that these two fields are already sums of all other
fields. So if we would sum up everything we would count every interrupt
twice.
This is broken since the split interrupt accounting was merged two years
ago: 052ff461c8427629aee887ccc27478fc7373237c "[S390] irq: have detailed
statistics for interrupt types".
To fix this remove the split interrupt fields from /proc/stat's "intr"
line again and only have them in /proc/interrupts.
This restores the old behaviour, seems to be the only sane fix and mimics
a behaviour from other architectures where /proc/interrupts also contains
more than /proc/stat's "intr" line does.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
Remove the file name from the comment at top of many files. In most
cases the file name was wrong anyway, so it's rather pointless.
Also unify the IBM copyright statement. We did have a lot of sightly
different statements and wanted to change them one after another
whenever a file gets touched. However that never happened. Instead
people start to take the old/"wrong" statements to use as a template
for new files.
So unify all of them in one go.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
|
|
Whenever the cpu loads an enabled wait PSW it will appear as idle to the
underlying host system. The code in default_idle calls vtime_stop_cpu
which does the necessary voodoo to get the cpu time accounting right.
The udelay code just loads an enabled wait PSW. To correct this rework
the vtime_stop_cpu/vtime_start_cpu logic and move the difficult parts
to entry[64].S, vtime_stop_cpu can now be called from anywhere and
vtime_start_cpu is gone. The correction of the cpu time during wakeup
from an enabled wait PSW is done with a critical section in entry[64].S.
As vtime_start_cpu is gone, s390_idle_check can be removed as well.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
It's a very old and now unused prototype marking so just delete it.
Neaten panic pointer argument style to keep checkpatch quiet.
Signed-off-by: Joe Perches <joe@perches.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Up to now /proc/interrupts only has statistics for external and i/o
interrupts but doesn't split up them any further.
This patch adds a line for every single interrupt source so that it
is possible to easier tell what the machine is/was doing.
Part of the output now looks like this;
CPU0 CPU2 CPU4
EXT: 3898 4232 2305
I/O: 782 315 245
CLK: 1029 1964 727 [EXT] Clock Comparator
IPI: 2868 2267 1577 [EXT] Signal Processor
TMR: 0 0 0 [EXT] CPU Timer
TAL: 0 0 0 [EXT] Timing Alert
PFL: 0 0 0 [EXT] Pseudo Page Fault
[...]
NMI: 0 1 1 [NMI] Machine Checks
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
On each machine check all registers are revalidated. The save area for
the clock comparator however only contains the upper most seven bytes
of the former contents, if valid.
Therefore the machine check handler uses a store clock instruction to
get the current time and writes that to the clock comparator register
which in turn will generate an immediate timer interrupt.
However within the lowcore the expected time of the next timer
interrupt is stored. If the interrupt happens before that time the
handler won't be called. In turn the clock comparator won't be
reprogrammed and therefore the interrupt condition stays pending which
causes an interrupt loop until the expected time is reached.
On NOHZ machines this can result in unresponsive machines since the
time of the next expected interrupted can be a couple of days in the
future.
To fix this just revalidate the clock comparator register with the
expected value.
In addition the special handling for udelay must be changed as well.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
A machine check can interrupt the i/o and external interrupt handler
anytime. If the machine check occurs while the interrupt handler is
waking up from idle vtime_start_cpu can get executed a second time
and the int_clock / async_enter_timer values in the lowcore get
clobbered. This can confuse the cpu time accounting.
To fix this problem two changes are needed. First the machine check
handler has to use its own copies of int_clock and async_enter_timer,
named mcck_clock and mcck_enter_timer. Second the nested execution
of vtime_start_cpu has to be prevented. This is done in s390_idle_check
by checking the wait bit in the program status word.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
All definition in cpu.h have to do with cputime accounting. Move
them to cputime.h and remove the header file.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
nmi_enter/nmi_exit includes the lockdep calls and various
other calls which were missing so far.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
Everybody enables it so there is no point for an extra config option.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
|
Split machine check handler code and move it to cio and kernel code
where it belongs to. No functional change.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|