summaryrefslogtreecommitdiff
path: root/arch/ppc64/mm
AgeCommit message (Collapse)Author
2005-06-21[PATCH] Avoiding mmap fragmentationWolfgang Wander
Ingo recently introduced a great speedup for allocating new mmaps using the free_area_cache pointer which boosts the specweb SSL benchmark by 4-5% and causes huge performance increases in thread creation. The downside of this patch is that it does lead to fragmentation in the mmap-ed areas (visible via /proc/self/maps), such that some applications that work fine under 2.4 kernels quickly run out of memory on any 2.6 kernel. The problem is twofold: 1) the free_area_cache is used to continue a search for memory where the last search ended. Before the change new areas were always searched from the base address on. So now new small areas are cluttering holes of all sizes throughout the whole mmap-able region whereas before small holes tended to close holes near the base leaving holes far from the base large and available for larger requests. 2) the free_area_cache also is set to the location of the last munmap-ed area so in scenarios where we allocate e.g. five regions of 1K each, then free regions 4 2 3 in this order the next request for 1K will be placed in the position of the old region 3, whereas before we appended it to the still active region 1, placing it at the location of the old region 2. Before we had 1 free region of 2K, now we only get two free regions of 1K -> fragmentation. The patch addresses thes issues by introducing yet another cache descriptor cached_hole_size that contains the largest known hole size below the current free_area_cache. If a new request comes in the size is compared against the cached_hole_size and if the request can be filled with a hole below free_area_cache the search is started from the base instead. The results look promising: Whereas 2.6.12-rc4 fragments quickly and my (earlier posted) leakme.c test program terminates after 50000+ iterations with 96 distinct and fragmented maps in /proc/self/maps it performs nicely (as expected) with thread creation, Ingo's test_str02 with 20000 threads requires 0.7s system time. Taking out Ingo's patch (un-patch available per request) by basically deleting all mentions of free_area_cache from the kernel and starting the search for new memory always at the respective bases we observe: leakme terminates successfully with 11 distinctive hardly fragmented areas in /proc/self/maps but thread creating is gringdingly slow: 30+s(!) system time for Ingo's test_str02 with 20000 threads. Now - drumroll ;-) the appended patch works fine with leakme: it ends with only 7 distinct areas in /proc/self/maps and also thread creation seems sufficiently fast with 0.71s for 20000 threads. Signed-off-by: Wolfgang Wander <wwc@rentec.com> Credit-to: "Richard Purdie" <rpurdie@rpsys.net> Signed-off-by: Ken Chen <kenneth.w.chen@intel.com> Acked-by: Ingo Molnar <mingo@elte.hu> (partly) Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-21[PATCH] Hugepage consolidationDavid Gibson
A lot of the code in arch/*/mm/hugetlbpage.c is quite similar. This patch attempts to consolidate a lot of the code across the arch's, putting the combined version in mm/hugetlb.c. There are a couple of uglyish hacks in order to covert all the hugepage archs, but the result is a very large reduction in the total amount of code. It also means things like hugepage lazy allocation could be implemented in one place, instead of six. Tested, at least a little, on ppc64, i386 and x86_64. Notes: - this patch changes the meaning of set_huge_pte() to be more analagous to set_pte() - does SH4 need s special huge_ptep_get_and_clear()?? Acked-by: William Lee Irwin <wli@holomorphy.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-05[PATCH] ppc64: remove explicit contig_page_data referencePaul Mackerras
Trivial patch to remove our last direct reference to contig_page_data. This will make it just that much less hard to seperate NUMA and DISCONTIG. Please forward on. Against 2.6.12-rc1 Signed-off-by: Joel Schopp <jschopp@austin.ibm.com> Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-05[PATCH] ppc64: pgtable.h and other header cleanupsDavid Gibson
This patch started as simply removing a few never-used macros from asm-ppc64/pgtable.h, then kind of grew. It now makes a bunch of cleanups to the ppc64 low-level header files (with corresponding changes to .c files where necessary) such as: - Abolishing never-used macros - Eliminating multiple #defines with the same purpose - Removing pointless macros (cases where just expanding the macro everywhere turns out clearer and more sensible) - Removing some cases where macros which could be defined in terms of each other weren't - Moving imalloc() related definitions from pgtable.h to their own header file (imalloc.h) - Re-arranging headers to group things more logically - Moving all VSID allocation related things to mmu.h, instead of being split between mmu.h and mmu_context.h - Removing some reserved space for flags from the PMD - we're not using it. - Fix some bugs which broke compile with STRICT_MM_TYPECHECKS. Signed-off-by: David Gibson <dwg@au1.ibm.com> Acked-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-01[PATCH] PPC64: Remove hot busy-wait loop in __hash_pageOlof Johansson
It turns out that our current __hash_page code will do a very hot busy-wait loop waiting on _PAGE_BUSY to be cleared. It even does ldarx/stdcx in the loop, which will bounce reservations around like crazy if there's more than one CPU spinning on the same PTE (or even another PTE in the same reservation granule). The end result is that each fault takes longer when there's contention, which in turn increases the chance of another thread hitting the same fault and also piling up. Not pretty. There's two options here: 1. Do an out-of-line busy loop a'la spinlocks with just loads (no reserves) 2. Just bail and refault if needed. (2) makes sense here: If the PTE is busy, chances are it's in flux anyway and the other code path making a change might just be ready to hash it. This fixes a stampede seen on a large-ish system where a multithreaded HPC app faults in the same text pages on several cpus at the same time. Signed-off-by: Olof Johansson <olof@lixom.net> Cc: Paul Mackerras <paulus@samba.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-01[PATCH] ppc64: update to use the new 4L headersBenjamin Herrenschmidt
This patch converts ppc64 to use the generic pgtable-nopud.h instead of the "fixup" header. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-01[PATCH] ppc64: remove unused argument to create_slbeOlof Johansson
Remove vsid argument to create_slbe, since it's no longer used. Spotted by R Sharada. Signed-off-by: Olof Johansson <olof@austin.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19[PATCH] freepgt: hugetlb area is cleanHugh Dickins
Once we're strict about clearing away page tables, hugetlb_prefault can assume there are no page tables left within its range. Since the other arches continue if !pte_none here, let i386 do the same. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-19[PATCH] freepgt: hugetlb_free_pgd_rangeHugh Dickins
ia64 and ppc64 had hugetlb_free_pgtables functions which were no longer being called, and it wasn't obvious what to do about them. The ppc64 case turns out to be easy: the associated tables are noted elsewhere and freed later, safe to either skip its hugetlb areas or go through the motions of freeing nothing. Since ia64 does need a special case, restore to ppc64 the special case of skipping them. The ia64 hugetlb case has been broken since pgd_addr_end went in, though it probably appeared to work okay if you just had one such area; in fact it's been broken much longer if you consider a long munmap spanning from another region into the hugetlb region. In the ia64 hugetlb region, more virtual address bits are available than in the other regions, yet the page tables are structured the same way: the page at the bottom is larger. Here we need to scale down each addr before passing it to the standard free_pgd_range. Was about to write a hugely_scaled_down macro, but found htlbpage_to_page already exists for just this purpose. Fixed off-by-one in ia64 is_hugepage_only_range. Uninline free_pgd_range to make it available to ia64. Make sure the vma-gathering loop in free_pgtables cannot join a hugepage_only_range to any other (safe to join huges? probably but don't bother). Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-16[PATCH] ppc64: Fix semantics of __ioremapBenjamin Herrenschmidt
This patch fixes ppc64 __ioremap() so that it stops adding implicitely _PAGE_GUARDED when the cache is not writeback, and instead, let the callers provide the flag they want here. This allows things like framebuffers to explicitely request a non-cacheable and non-guarded mapping which is more efficient for that type of memory without side effects. The patch also fixes all current callers to add _PAGE_GUARDED except btext, which is fine without it. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-16Linux-2.6.12-rc2Linus Torvalds
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!