Age | Commit message (Collapse) | Author |
|
The first such capability to be handled in virt/kvm/ will be manual
dirty page reprotection.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When booting a kvm-pr guest on a POWER9 machine the following message is
observed:
"qemu-system-ppc64: KVM does not support 1TiB segments which guest expects"
This is because the guest is expecting to be able to use 1T segments
however we don't indicate support for it. This is because we don't set
the BOOK3S_HFLAG_MULTI_PGSIZE flag in the hflags in kvmppc_set_pvr_pr()
on POWER9.
POWER9 does indeed have support for 1T segments, so add a case for
POWER9 to the switch statement to ensure it is set.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
|
Use DEFINE_SHOW_ATTRIBUTE macro to simplify the code.
Signed-off-by: Yangtao Li <tiny.windzz@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
|
Testing has revealed an occasional crash which appears to be caused
by a race between kvmppc_switch_mmu_to_hpt and kvm_unmap_hva_range_hv.
The symptom is a NULL pointer dereference in __find_linux_pte() called
from kvm_unmap_radix() with kvm->arch.pgtable == NULL.
Looking at kvmppc_switch_mmu_to_hpt(), it does indeed clear
kvm->arch.pgtable (via kvmppc_free_radix()) before setting
kvm->arch.radix to NULL, and there is nothing to prevent
kvm_unmap_hva_range_hv() or the other MMU callback functions from
being called concurrently with kvmppc_switch_mmu_to_hpt() or
kvmppc_switch_mmu_to_radix().
This patch therefore adds calls to spin_lock/unlock on the kvm->mmu_lock
around the assignments to kvm->arch.radix, and makes sure that the
partition-scoped radix tree or HPT is only freed after changing
kvm->arch.radix.
This also takes the kvm->mmu_lock in kvmppc_rmap_reset() to make sure
that the clearing of each rmap array (one per memslot) doesn't happen
concurrently with use of the array in the kvm_unmap_hva_range_hv()
or the other MMU callbacks.
Fixes: 18c3640cefc7 ("KVM: PPC: Book3S HV: Add infrastructure for running HPT guests on radix host")
Cc: stable@vger.kernel.org # v4.15+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
|
The purpose of this patch is to move platform specific
mmu-xxx.h files in platform directories like pte-xxx.h files.
In the meantime this patch creates common nohash and
nohash/32 + nohash/64 mmu.h files for future common parts.
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
https://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc into HEAD
PPC KVM fixes for 4.20
This has a single 1-line patch which fixes a bug in the recently-merged
nested HV KVM support.
|
|
While running a nested guest VCPU on L0 via H_ENTER_NESTED hcall, a
pending signal in the L0 QEMU process can generate the following
sequence:
ret0 = kvmppc_pseries_do_hcall()
ret1 = kvmhv_enter_nested_guest()
ret2 = kvmhv_run_single_vcpu()
if (ret2 == -EINTR)
return H_INTERRUPT
if (ret1 == H_INTERRUPT)
kvmppc_set_gpr(vcpu, 3, 0)
return -EINTR
/* skipped: */
kvmppc_set_gpr(vcpu, 3, ret)
vcpu->arch.hcall_needed = 0
return RESUME_GUEST
which causes an exit to L0 userspace with ret0 == -EINTR.
The intention seems to be to set the hcall return value to 0 (via
VCPU r3) so that L1 will see a successful return from H_ENTER_NESTED
once we resume executing the VCPU. However, because we don't set
vcpu->arch.hcall_needed = 0, we do the following once userspace
resumes execution via kvm_arch_vcpu_ioctl_run():
...
} else if (vcpu->arch.hcall_needed) {
int i
kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
for (i = 0; i < 9; ++i)
kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
vcpu->arch.hcall_needed = 0;
since vcpu->arch.hcall_needed == 1 indicates that userspace should
have handled the hcall and stored the return value in
run->papr_hcall.ret. Since that's not the case here, we can get an
unexpected value in VCPU r3, which can result in
kvmhv_p9_guest_entry() reporting an unexpected trap value when it
returns from H_ENTER_NESTED, causing the following register dump to
console via subsequent call to kvmppc_handle_exit_hv() in L1:
[ 350.612854] vcpu 00000000f9564cf8 (0):
[ 350.612915] pc = c00000000013eb98 msr = 8000000000009033 trap = 1
[ 350.613020] r 0 = c0000000004b9044 r16 = 0000000000000000
[ 350.613075] r 1 = c00000007cffba30 r17 = 0000000000000000
[ 350.613120] r 2 = c00000000178c100 r18 = 00007fffc24f3b50
[ 350.613166] r 3 = c00000007ef52480 r19 = 00007fffc24fff58
[ 350.613212] r 4 = 0000000000000000 r20 = 00000a1e96ece9d0
[ 350.613253] r 5 = 70616d00746f6f72 r21 = 00000a1ea117c9b0
[ 350.613295] r 6 = 0000000000000020 r22 = 00000a1ea1184360
[ 350.613338] r 7 = c0000000783be440 r23 = 0000000000000003
[ 350.613380] r 8 = fffffffffffffffc r24 = 00000a1e96e9e124
[ 350.613423] r 9 = c00000007ef52490 r25 = 00000000000007ff
[ 350.613469] r10 = 0000000000000004 r26 = c00000007eb2f7a0
[ 350.613513] r11 = b0616d0009eccdb2 r27 = c00000007cffbb10
[ 350.613556] r12 = c0000000004b9000 r28 = c00000007d83a2c0
[ 350.613597] r13 = c000000001b00000 r29 = c0000000783cdf68
[ 350.613639] r14 = 0000000000000000 r30 = 0000000000000000
[ 350.613681] r15 = 0000000000000000 r31 = c00000007cffbbf0
[ 350.613723] ctr = c0000000004b9000 lr = c0000000004b9044
[ 350.613765] srr0 = 0000772f954dd48c srr1 = 800000000280f033
[ 350.613808] sprg0 = 0000000000000000 sprg1 = c000000001b00000
[ 350.613859] sprg2 = 0000772f9565a280 sprg3 = 0000000000000000
[ 350.613911] cr = 88002848 xer = 0000000020040000 dsisr = 42000000
[ 350.613962] dar = 0000772f95390000
[ 350.614031] fault dar = c000000244b278c0 dsisr = 00000000
[ 350.614073] SLB (0 entries):
[ 350.614157] lpcr = 0040000003d40413 sdr1 = 0000000000000000 last_inst = ffffffff
[ 350.614252] trap=0x1 | pc=0xc00000000013eb98 | msr=0x8000000000009033
followed by L1's QEMU reporting the following before stopping execution
of the nested guest:
KVM: unknown exit, hardware reason 1
NIP c00000000013eb98 LR c0000000004b9044 CTR c0000000004b9000 XER 0000000020040000 CPU#0
MSR 8000000000009033 HID0 0000000000000000 HF 8000000000000000 iidx 3 didx 3
TB 00000000 00000000 DECR 00000000
GPR00 c0000000004b9044 c00000007cffba30 c00000000178c100 c00000007ef52480
GPR04 0000000000000000 70616d00746f6f72 0000000000000020 c0000000783be440
GPR08 fffffffffffffffc c00000007ef52490 0000000000000004 b0616d0009eccdb2
GPR12 c0000000004b9000 c000000001b00000 0000000000000000 0000000000000000
GPR16 0000000000000000 0000000000000000 00007fffc24f3b50 00007fffc24fff58
GPR20 00000a1e96ece9d0 00000a1ea117c9b0 00000a1ea1184360 0000000000000003
GPR24 00000a1e96e9e124 00000000000007ff c00000007eb2f7a0 c00000007cffbb10
GPR28 c00000007d83a2c0 c0000000783cdf68 0000000000000000 c00000007cffbbf0
CR 88002848 [ L L - - E L G L ] RES ffffffffffffffff
SRR0 0000772f954dd48c SRR1 800000000280f033 PVR 00000000004e1202 VRSAVE 0000000000000000
SPRG0 0000000000000000 SPRG1 c000000001b00000 SPRG2 0000772f9565a280 SPRG3 0000000000000000
SPRG4 0000000000000000 SPRG5 0000000000000000 SPRG6 0000000000000000 SPRG7 0000000000000000
HSRR0 0000000000000000 HSRR1 0000000000000000
CFAR 0000000000000000
LPCR 0000000003d40413
PTCR 0000000000000000 DAR 0000772f95390000 DSISR 0000000042000000
Fix this by setting vcpu->arch.hcall_needed = 0 to indicate completion
of H_ENTER_NESTED before we exit to L0 userspace.
Fixes: 360cae313702 ("KVM: PPC: Book3S HV: Nested guest entry via hypercall")
Cc: linuxppc-dev@ozlabs.org
Cc: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
|
TRACE_INCLUDE_PATH and TRACE_INCLUDE_FILE are used by
<trace/define_trace.h>, so like that #include, they should
be outside #ifdef protection.
They also need to be #undefed before defining, in case multiple trace
headers are included by the same C file. This became the case on
book3e after commit cf4a6085151a ("powerpc/mm: Add missing tracepoint for
tlbie"), leading to the following build error:
CC arch/powerpc/kvm/powerpc.o
In file included from arch/powerpc/kvm/powerpc.c:51:0:
arch/powerpc/kvm/trace.h:9:0: error: "TRACE_INCLUDE_PATH" redefined
[-Werror]
#define TRACE_INCLUDE_PATH .
^
In file included from arch/powerpc/kvm/../mm/mmu_decl.h:25:0,
from arch/powerpc/kvm/powerpc.c:48:
./arch/powerpc/include/asm/trace.h:224:0: note: this is the location of
the previous definition
#define TRACE_INCLUDE_PATH asm
^
cc1: all warnings being treated as errors
Reported-by: Christian Zigotzky <chzigotzky@xenosoft.de>
Signed-off-by: Scott Wood <oss@buserror.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
"Some things that I missed due to travel, or that came in late.
Two fixes also going to stable:
- A revert of a buggy change to the 8xx TLB miss handlers.
- Our flushing of SPE (Signal Processing Engine) registers on fork
was broken.
Other changes:
- A change to the KVM decrementer emulation to use proper APIs.
- Some cleanups to the way we do code patching in the 8xx code.
- Expose the maximum possible memory for the system in
/proc/powerpc/lparcfg.
- Merge some updates from Scott: "a couple device tree updates, and a
fix for a missing prototype warning"
A few other minor fixes and a handful of fixes for our selftests.
Thanks to: Aravinda Prasad, Breno Leitao, Camelia Groza, Christophe
Leroy, Felipe Rechia, Joel Stanley, Naveen N. Rao, Paul Mackerras,
Scott Wood, Tyrel Datwyler"
* tag 'powerpc-4.20-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (21 commits)
selftests/powerpc: Fix compilation issue due to asm label
selftests/powerpc/cache_shape: Fix out-of-tree build
selftests/powerpc/switch_endian: Fix out-of-tree build
selftests/powerpc/pmu: Link ebb tests with -no-pie
selftests/powerpc/signal: Fix out-of-tree build
selftests/powerpc/ptrace: Fix out-of-tree build
powerpc/xmon: Relax frame size for clang
selftests: powerpc: Fix warning for security subdir
selftests/powerpc: Relax L1d miss targets for rfi_flush test
powerpc/process: Fix flush_all_to_thread for SPE
powerpc/pseries: add missing cpumask.h include file
selftests/powerpc: Fix ptrace tm failure
KVM: PPC: Use exported tb_to_ns() function in decrementer emulation
powerpc/pseries: Export maximum memory value
powerpc/8xx: Use patch_site for perf counters setup
powerpc/8xx: Use patch_site for memory setup patching
powerpc/code-patching: Add a helper to get the address of a patch_site
Revert "powerpc/8xx: Use L1 entry APG to handle _PAGE_ACCESSED for CONFIG_SWAP"
powerpc/8xx: add missing header in 8xx_mmu.c
powerpc/8xx: Add DT node for using the SEC engine of the MPC885
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Notable changes:
- A large series to rewrite our SLB miss handling, replacing a lot of
fairly complicated asm with much fewer lines of C.
- Following on from that, we now maintain a cache of SLB entries for
each process and preload them on context switch. Leading to a 27%
speedup for our context switch benchmark on Power9.
- Improvements to our handling of SLB multi-hit errors. We now print
more debug information when they occur, and try to continue running
by flushing the SLB and reloading, rather than treating them as
fatal.
- Enable THP migration on 64-bit Book3S machines (eg. Power7/8/9).
- Add support for physical memory up to 2PB in the linear mapping on
64-bit Book3S. We only support up to 512TB as regular system
memory, otherwise the percpu allocator runs out of vmalloc space.
- Add stack protector support for 32 and 64-bit, with a per-task
canary.
- Add support for PTRACE_SYSEMU and PTRACE_SYSEMU_SINGLESTEP.
- Support recognising "big cores" on Power9, where two SMT4 cores are
presented to us as a single SMT8 core.
- A large series to cleanup some of our ioremap handling and PTE
flags.
- Add a driver for the PAPR SCM (storage class memory) interface,
allowing guests to operate on SCM devices (acked by Dan).
- Changes to our ftrace code to handle very large kernels, where we
need to use a trampoline to get to ftrace_caller().
And many other smaller enhancements and cleanups.
Thanks to: Alan Modra, Alistair Popple, Aneesh Kumar K.V, Anton
Blanchard, Aravinda Prasad, Bartlomiej Zolnierkiewicz, Benjamin
Herrenschmidt, Breno Leitao, Cédric Le Goater, Christophe Leroy,
Christophe Lombard, Dan Carpenter, Daniel Axtens, Finn Thain, Gautham
R. Shenoy, Gustavo Romero, Haren Myneni, Hari Bathini, Jia Hongtao,
Joel Stanley, John Allen, Laurent Dufour, Madhavan Srinivasan, Mahesh
Salgaonkar, Mark Hairgrove, Masahiro Yamada, Michael Bringmann,
Michael Neuling, Michal Suchanek, Murilo Opsfelder Araujo, Nathan
Fontenot, Naveen N. Rao, Nicholas Piggin, Nick Desaulniers, Oliver
O'Halloran, Paul Mackerras, Petr Vorel, Rashmica Gupta, Reza Arbab,
Rob Herring, Sam Bobroff, Samuel Mendoza-Jonas, Scott Wood, Stan
Johnson, Stephen Rothwell, Stewart Smith, Suraj Jitindar Singh, Tyrel
Datwyler, Vaibhav Jain, Vasant Hegde, YueHaibing, zhong jiang"
* tag 'powerpc-4.20-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (221 commits)
Revert "selftests/powerpc: Fix out-of-tree build errors"
powerpc/msi: Fix compile error on mpc83xx
powerpc: Fix stack protector crashes on CPU hotplug
powerpc/traps: restore recoverability of machine_check interrupts
powerpc/64/module: REL32 relocation range check
powerpc/64s/radix: Fix radix__flush_tlb_collapsed_pmd double flushing pmd
selftests/powerpc: Add a test of wild bctr
powerpc/mm: Fix page table dump to work on Radix
powerpc/mm/radix: Display if mappings are exec or not
powerpc/mm/radix: Simplify split mapping logic
powerpc/mm/radix: Remove the retry in the split mapping logic
powerpc/mm/radix: Fix small page at boundary when splitting
powerpc/mm/radix: Fix overuse of small pages in splitting logic
powerpc/mm/radix: Fix off-by-one in split mapping logic
powerpc/ftrace: Handle large kernel configs
powerpc/mm: Fix WARN_ON with THP NUMA migration
selftests/powerpc: Fix out-of-tree build errors
powerpc/time: no steal_time when CONFIG_PPC_SPLPAR is not selected
powerpc/time: Only set CONFIG_ARCH_HAS_SCALED_CPUTIME on PPC64
powerpc/time: isolate scaled cputime accounting in dedicated functions.
...
|
|
This changes the KVM code that emulates the decrementer function to do
the conversion of decrementer values to time intervals in nanoseconds
by calling the tb_to_ns() function exported by the powerpc timer code,
in preference to open-coded arithmetic using values from the
decrementer_clockevent struct. Similarly, the HV-KVM code that did
the same conversion using arithmetic on tb_ticks_per_sec also now
uses tb_to_ns().
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Pull KVM updates from Radim Krčmář:
"ARM:
- Improved guest IPA space support (32 to 52 bits)
- RAS event delivery for 32bit
- PMU fixes
- Guest entry hardening
- Various cleanups
- Port of dirty_log_test selftest
PPC:
- Nested HV KVM support for radix guests on POWER9. The performance
is much better than with PR KVM. Migration and arbitrary level of
nesting is supported.
- Disable nested HV-KVM on early POWER9 chips that need a particular
hardware bug workaround
- One VM per core mode to prevent potential data leaks
- PCI pass-through optimization
- merge ppc-kvm topic branch and kvm-ppc-fixes to get a better base
s390:
- Initial version of AP crypto virtualization via vfio-mdev
- Improvement for vfio-ap
- Set the host program identifier
- Optimize page table locking
x86:
- Enable nested virtualization by default
- Implement Hyper-V IPI hypercalls
- Improve #PF and #DB handling
- Allow guests to use Enlightened VMCS
- Add migration selftests for VMCS and Enlightened VMCS
- Allow coalesced PIO accesses
- Add an option to perform nested VMCS host state consistency check
through hardware
- Automatic tuning of lapic_timer_advance_ns
- Many fixes, minor improvements, and cleanups"
* tag 'kvm-4.20-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (204 commits)
KVM/nVMX: Do not validate that posted_intr_desc_addr is page aligned
Revert "kvm: x86: optimize dr6 restore"
KVM: PPC: Optimize clearing TCEs for sparse tables
x86/kvm/nVMX: tweak shadow fields
selftests/kvm: add missing executables to .gitignore
KVM: arm64: Safety check PSTATE when entering guest and handle IL
KVM: PPC: Book3S HV: Don't use streamlined entry path on early POWER9 chips
arm/arm64: KVM: Enable 32 bits kvm vcpu events support
arm/arm64: KVM: Rename function kvm_arch_dev_ioctl_check_extension()
KVM: arm64: Fix caching of host MDCR_EL2 value
KVM: VMX: enable nested virtualization by default
KVM/x86: Use 32bit xor to clear registers in svm.c
kvm: x86: Introduce KVM_CAP_EXCEPTION_PAYLOAD
kvm: vmx: Defer setting of DR6 until #DB delivery
kvm: x86: Defer setting of CR2 until #PF delivery
kvm: x86: Add payload operands to kvm_multiple_exception
kvm: x86: Add exception payload fields to kvm_vcpu_events
kvm: x86: Add has_payload and payload to kvm_queued_exception
KVM: Documentation: Fix omission in struct kvm_vcpu_events
KVM: selftests: add Enlightened VMCS test
...
|
|
The powernv platform maintains 2 TCE tables for VFIO - a hardware TCE
table and a table with userspace addresses. These tables are radix trees,
we allocate indirect levels when they are written to. Since
the memory allocation is problematic in real mode, we have 2 accessors
to the entries:
- for virtual mode: it allocates the memory and it is always expected
to return non-NULL;
- fr real mode: it does not allocate and can return NULL.
Also, DMA windows can span to up to 55 bits of the address space and since
we never have this much RAM, such windows are sparse. However currently
the SPAPR TCE IOMMU driver walks through all TCEs to unpin DMA memory.
Since we maintain a userspace addresses table for VFIO which is a mirror
of the hardware table, we can use it to know which parts of the DMA
window have not been mapped and skip these so does this patch.
The bare metal systems do not have this problem as they use a bypass mode
of a PHB which maps RAM directly.
This helps a lot with sparse DMA windows, reducing the shutdown time from
about 3 minutes per 1 billion TCEs to a few seconds for 32GB sparse guest.
Just skipping the last level seems to be good enough.
As non-allocating accessor is used now in virtual mode as well, rename it
from IOMMU_TABLE_USERSPACE_ENTRY_RM (real mode) to _RO (read only).
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
|
This disables the use of the streamlined entry path for radix guests
on early POWER9 chips that need the workaround added in commit
a25bd72badfa ("powerpc/mm/radix: Workaround prefetch issue with KVM",
2017-07-24), because the streamlined entry path does not include
that workaround. This also means that we can't do nested HV-KVM
on those chips.
Since the chips that need that workaround are the same ones that can't
run both radix and HPT guests at the same time on different threads of
a core, we use the existing 'no_mixing_hpt_and_radix' variable that
identifies those chips to identify when we can't use the new guest
entry path, and when we can't do nested virtualization.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
|
Back when I added -Werror in commit ba55bd74360e ("powerpc: Add
configurable -Werror for arch/powerpc") I did it by adding it to most
of the arch Makefiles.
At the time we excluded math-emu, because apparently it didn't build
cleanly. But that seems to have been fixed somewhere in the interim.
So move the -Werror addition to the top-level of the arch, this saves
us from repeating it in every Makefile and means we won't forget to
add it to any new sub-dirs.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This adds a KVM_PPC_NO_HASH flag to the flags field of the
kvm_ppc_smmu_info struct, and arranges for it to be set when
running as a nested hypervisor, as an unambiguous indication
to userspace that HPT guests are not supported. Reporting the
KVM_CAP_PPC_MMU_HASH_V3 capability as false could be taken as
indicating only that the new HPT features in ISA V3.0 are not
supported, leaving it ambiguous whether pre-V3.0 HPT features
are supported.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
|
With this, userspace can enable a KVM-HV guest to run nested guests
under it.
The administrator can control whether any nested guests can be run;
setting the "nested" module parameter to false prevents any guests
becoming nested hypervisors (that is, any attempt to enable the nested
capability on a guest will fail). Guests which are already nested
hypervisors will continue to be so.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
|
This merges in the "ppc-kvm" topic branch of the powerpc tree to get a
series of commits that touch both general arch/powerpc code and KVM
code. These commits will be merged both via the KVM tree and the
powerpc tree.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
|
This adds a list of valid shadow PTEs for each nested guest to
the 'radix' file for the guest in debugfs. This can be useful for
debugging.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
With this, the KVM-HV module can be loaded in a guest running under
KVM-HV, and if the hypervisor supports nested virtualization, this
guest can now act as a nested hypervisor and run nested guests.
This also adds some checks to inform userspace that HPT guests are not
supported by nested hypervisors (by returning false for the
KVM_CAP_PPC_MMU_HASH_V3 capability), and to prevent userspace from
configuring a guest to use HPT mode.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The hcall H_ENTER_NESTED takes two parameters: the address in L1 guest
memory of a hv_regs struct and the address of a pt_regs struct. The
hcall requests the L0 hypervisor to use the register values in these
structs to run a L2 guest and to return the exit state of the L2 guest
in these structs. These are in the endianness of the L1 guest, rather
than being always big-endian as is usually the case for PAPR
hypercalls.
This is convenient because it means that the L1 guest can pass the
address of the regs field in its kvm_vcpu_arch struct. This also
improves performance slightly by avoiding the need for two copies of
the pt_regs struct.
When reading/writing these structures, this patch handles the case
where the endianness of the L1 guest differs from that of the L0
hypervisor, by byteswapping the structures after reading and before
writing them back.
Since all the fields of the pt_regs are of the same type, i.e.,
unsigned long, we treat it as an array of unsigned longs. The fields
of struct hv_guest_state are not all the same, so its fields are
byteswapped individually.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
restore_hv_regs() is used to copy the hv_regs L1 wants to set to run the
nested (L2) guest into the vcpu structure. We need to sanitise these
values to ensure we don't let the L1 guest hypervisor do things we don't
want it to.
We don't let data address watchpoints or completed instruction address
breakpoints be set to match in hypervisor state.
We also don't let L1 enable features in the hypervisor facility status
and control register (HFSCR) for L2 which we have disabled for L1. That
is L2 will get the subset of features which the L0 hypervisor has
enabled for L1 and the features L1 wants to enable for L2. This could
mean we give L1 a hypervisor facility unavailable interrupt for a
facility it thinks it has enabled, however it shouldn't have enabled a
facility it itself doesn't have for the L2 guest.
We sanitise the registers when copying in the L2 hv_regs. We don't need
to sanitise when copying back the L1 hv_regs since these shouldn't be
able to contain invalid values as they're just what was copied out.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This adds a one-reg register identifier which can be used to read and
set the virtual PTCR for the guest. This register identifies the
address and size of the virtual partition table for the guest, which
contains information about the nested guests under this guest.
Migrating this value is the only extra requirement for migrating a
guest which has nested guests (assuming of course that the destination
host supports nested virtualization in the kvm-hv module).
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
When running as a nested hypervisor, this avoids reading hypervisor
privileged registers (specifically HFSCR, LPIDR and LPCR) at startup;
instead reasonable default values are used. This also avoids writing
LPIDR in the single-vcpu entry/exit path.
Also, this removes the check for CPU_FTR_HVMODE in kvmppc_mmu_hv_init()
since its only caller already checks this.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This is only done at level 0, since only level 0 knows which physical
CPU a vcpu is running on. This does for nested guests what L0 already
did for its own guests, which is to flush the TLB on a pCPU when it
goes to run a vCPU there, and there is another vCPU in the same VM
which previously ran on this pCPU and has now started to run on another
pCPU. This is to handle the situation where the other vCPU touched
a mapping, moved to another pCPU and did a tlbiel (local-only tlbie)
on that new pCPU and thus left behind a stale TLB entry on this pCPU.
This introduces a limit on the the vcpu_token values used in the
H_ENTER_NESTED hcall -- they must now be less than NR_CPUS.
[paulus@ozlabs.org - made prev_cpu array be short[] to reduce
memory consumption.]
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This adds code to call the H_TLB_INVALIDATE hypercall when running as
a guest, in the cases where we need to invalidate TLBs (or other MMU
caches) as part of managing the mappings for a nested guest. Calling
H_TLB_INVALIDATE lets the nested hypervisor inform the parent
hypervisor about changes to partition-scoped page tables or the
partition table without needing to do hypervisor-privileged tlbie
instructions.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
When running a nested (L2) guest the guest (L1) hypervisor will use
the H_TLB_INVALIDATE hcall when it needs to change the partition
scoped page tables or the partition table which it manages. It will
use this hcall in the situations where it would use a partition-scoped
tlbie instruction if it were running in hypervisor mode.
The H_TLB_INVALIDATE hcall can invalidate different scopes:
Invalidate TLB for a given target address:
- This invalidates a single L2 -> L1 pte
- We need to invalidate any L2 -> L0 shadow_pgtable ptes which map the L2
address space which is being invalidated. This is because a single
L2 -> L1 pte may have been mapped with more than one pte in the
L2 -> L0 page tables.
Invalidate the entire TLB for a given LPID or for all LPIDs:
- Invalidate the entire shadow_pgtable for a given nested guest, or
for all nested guests.
Invalidate the PWC (page walk cache) for a given LPID or for all LPIDs:
- We don't cache the PWC, so nothing to do.
Invalidate the entire TLB, PWC and partition table for a given/all LPIDs:
- Here we re-read the partition table entry and remove the nested state
for any nested guest for which the first doubleword of the partition
table entry is now zero.
The H_TLB_INVALIDATE hcall takes as parameters the tlbie instruction
word (of which only the RIC, PRS and R fields are used), the rS value
(giving the lpid, where required) and the rB value (giving the IS, AP
and EPN values).
[paulus@ozlabs.org - adapted to having the partition table in guest
memory, added the H_TLB_INVALIDATE implementation, removed tlbie
instruction emulation, reworded the commit message.]
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
When a host (L0) page which is mapped into a (L1) guest is in turn
mapped through to a nested (L2) guest we keep a reverse mapping (rmap)
so that these mappings can be retrieved later.
Whenever we create an entry in a shadow_pgtable for a nested guest we
create a corresponding rmap entry and add it to the list for the
L1 guest memslot at the index of the L1 guest page it maps. This means
at the L1 guest memslot we end up with lists of rmaps.
When we are notified of a host page being invalidated which has been
mapped through to a (L1) guest, we can then walk the rmap list for that
guest page, and find and invalidate all of the corresponding
shadow_pgtable entries.
In order to reduce memory consumption, we compress the information for
each rmap entry down to 52 bits -- 12 bits for the LPID and 40 bits
for the guest real page frame number -- which will fit in a single
unsigned long. To avoid a scenario where a guest can trigger
unbounded memory allocations, we scan the list when adding an entry to
see if there is already an entry with the contents we need. This can
occur, because we don't ever remove entries from the middle of a list.
A struct nested guest rmap is a list pointer and an rmap entry;
----------------
| next pointer |
----------------
| rmap entry |
----------------
Thus the rmap pointer for each guest frame number in the memslot can be
either NULL, a single entry, or a pointer to a list of nested rmap entries.
gfn memslot rmap array
-------------------------
0 | NULL | (no rmap entry)
-------------------------
1 | single rmap entry | (rmap entry with low bit set)
-------------------------
2 | list head pointer | (list of rmap entries)
-------------------------
The final entry always has the lowest bit set and is stored in the next
pointer of the last list entry, or as a single rmap entry.
With a list of rmap entries looking like;
----------------- ----------------- -------------------------
| list head ptr | ----> | next pointer | ----> | single rmap entry |
----------------- ----------------- -------------------------
| rmap entry | | rmap entry |
----------------- -------------------------
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Consider a normal (L1) guest running under the main hypervisor (L0),
and then a nested guest (L2) running under the L1 guest which is acting
as a nested hypervisor. L0 has page tables to map the address space for
L1 providing the translation from L1 real address -> L0 real address;
L1
|
| (L1 -> L0)
|
----> L0
There are also page tables in L1 used to map the address space for L2
providing the translation from L2 real address -> L1 read address. Since
the hardware can only walk a single level of page table, we need to
maintain in L0 a "shadow_pgtable" for L2 which provides the translation
from L2 real address -> L0 real address. Which looks like;
L2 L2
| |
| (L2 -> L1) |
| |
----> L1 | (L2 -> L0)
| |
| (L1 -> L0) |
| |
----> L0 --------> L0
When a page fault occurs while running a nested (L2) guest we need to
insert a pte into this "shadow_pgtable" for the L2 -> L0 mapping. To
do this we need to:
1. Walk the pgtable in L1 memory to find the L2 -> L1 mapping, and
provide a page fault to L1 if this mapping doesn't exist.
2. Use our L1 -> L0 pgtable to convert this L1 address to an L0 address,
or try to insert a pte for that mapping if it doesn't exist.
3. Now we have a L2 -> L0 mapping, insert this into our shadow_pgtable
Once this mapping exists we can take rc faults when hardware is unable
to automatically set the reference and change bits in the pte. On these
we need to:
1. Check the rc bits on the L2 -> L1 pte match, and otherwise reflect
the fault down to L1.
2. Set the rc bits in the L1 -> L0 pte which corresponds to the same
host page.
3. Set the rc bits in the L2 -> L0 pte.
As we reuse a large number of functions in book3s_64_mmu_radix.c for
this we also needed to refactor a number of these functions to take
an lpid parameter so that the correct lpid is used for tlb invalidations.
The functionality however has remained the same.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
When we are running as a nested hypervisor, we use a hypercall to
enter the guest rather than code in book3s_hv_rmhandlers.S. This means
that the hypercall handlers listed in hcall_real_table never get called.
There are some hypercalls that are handled there and not in
kvmppc_pseries_do_hcall(), which therefore won't get processed for
a nested guest.
To fix this, we add cases to kvmppc_pseries_do_hcall() to handle those
hypercalls, with the following exceptions:
- The HPT hypercalls (H_ENTER, H_REMOVE, etc.) are not handled because
we only support radix mode for nested guests.
- H_CEDE has to be handled specially because the cede logic in
kvmhv_run_single_vcpu assumes that it has been processed by the time
that kvmhv_p9_guest_entry() returns. Therefore we put a special
case for H_CEDE in kvmhv_p9_guest_entry().
For the XICS hypercalls, if real-mode processing is enabled, then the
virtual-mode handlers assume that they are being called only to finish
up the operation. Therefore we turn off the real-mode flag in the XICS
code when running as a nested hypervisor.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This adds code to call the H_IPI and H_EOI hypercalls when we are
running as a nested hypervisor (i.e. without the CPU_FTR_HVMODE cpu
feature) and we would otherwise access the XICS interrupt controller
directly or via an OPAL call.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This adds a new hypercall, H_ENTER_NESTED, which is used by a nested
hypervisor to enter one of its nested guests. The hypercall supplies
register values in two structs. Those values are copied by the level 0
(L0) hypervisor (the one which is running in hypervisor mode) into the
vcpu struct of the L1 guest, and then the guest is run until an
interrupt or error occurs which needs to be reported to L1 via the
hypercall return value.
Currently this assumes that the L0 and L1 hypervisors are the same
endianness, and the structs passed as arguments are in native
endianness. If they are of different endianness, the version number
check will fail and the hcall will be rejected.
Nested hypervisors do not support indep_threads_mode=N, so this adds
code to print a warning message if the administrator has set
indep_threads_mode=N, and treat it as Y.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This starts the process of adding the code to support nested HV-style
virtualization. It defines a new H_SET_PARTITION_TABLE hypercall which
a nested hypervisor can use to set the base address and size of a
partition table in its memory (analogous to the PTCR register).
On the host (level 0 hypervisor) side, the H_SET_PARTITION_TABLE
hypercall from the guest is handled by code that saves the virtual
PTCR value for the guest.
This also adds code for creating and destroying nested guests and for
reading the partition table entry for a nested guest from L1 memory.
Each nested guest has its own shadow LPID value, different in general
from the LPID value used by the nested hypervisor to refer to it. The
shadow LPID value is allocated at nested guest creation time.
Nested hypervisor functionality is only available for a radix guest,
which therefore means a radix host on a POWER9 (or later) processor.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
kvmppc_unmap_pte() does a sequence of operations that are open-coded in
kvm_unmap_radix(). This extends kvmppc_unmap_pte() a little so that it
can be used by kvm_unmap_radix(), and makes kvm_unmap_radix() call it.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The radix page fault handler accounts for all cases, including just
needing to insert a pte. This breaks it up into separate functions for
the two main cases; setting rc and inserting a pte.
This allows us to make the setting of rc and inserting of a pte
generic for any pgtable, not specific to the one for this guest.
[paulus@ozlabs.org - reduced diffs from previous code]
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
agnostic
kvmppc_mmu_radix_xlate() is used to translate an effective address
through the process tables. The process table and partition tables have
identical layout. Exploit this fact to make the kvmppc_mmu_radix_xlate()
function able to translate either an effective address through the
process tables or a guest real address through the partition tables.
[paulus@ozlabs.org - reduced diffs from previous code]
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
When destroying a VM we return the LPID to the pool, however we never
zero the partition table entry. This is instead done when we reallocate
the LPID.
Zero the partition table entry on VM teardown before returning the LPID
to the pool. This means if we were running as a nested hypervisor the
real hypervisor could use this to determine when it can free resources.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
When the 'regs' field was added to struct kvm_vcpu_arch, the code
was changed to use several of the fields inside regs (e.g., gpr, lr,
etc.) but not the ccr field, because the ccr field in struct pt_regs
is 64 bits on 64-bit platforms, but the cr field in kvm_vcpu_arch is
only 32 bits. This changes the code to use the regs.ccr field
instead of cr, and changes the assembly code on 64-bit platforms to
use 64-bit loads and stores instead of 32-bit ones.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This adds a file called 'radix' in the debugfs directory for the
guest, which when read gives all of the valid leaf PTEs in the
partition-scoped radix tree for a radix guest, in human-readable
format. It is analogous to the existing 'htab' file which dumps
the HPT entries for a HPT guest.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Currently the code for handling hypervisor instruction page faults
passes 0 for the flags indicating the type of fault, which is OK in
the usual case that the page is not mapped in the partition-scoped
page tables. However, there are other causes for hypervisor
instruction page faults, such as not being to update a reference
(R) or change (C) bit. The cause is indicated in bits in HSRR1,
including a bit which indicates that the fault is due to not being
able to write to a page (for example to update an R or C bit).
Not handling these other kinds of faults correctly can lead to a
loop of continual faults without forward progress in the guest.
In order to handle these faults better, this patch constructs a
"DSISR-like" value from the bits which DSISR and SRR1 (for a HISI)
have in common, and passes it to kvmppc_book3s_hv_page_fault() so
that it knows what caused the fault.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This creates an alternative guest entry/exit path which is used for
radix guests on POWER9 systems when we have indep_threads_mode=Y. In
these circumstances there is exactly one vcpu per vcore and there is
no coordination required between vcpus or vcores; the vcpu can enter
the guest without needing to synchronize with anything else.
The new fast path is implemented almost entirely in C in book3s_hv.c
and runs with the MMU on until the guest is entered. On guest exit
we use the existing path until the point where we are committed to
exiting the guest (as distinct from handling an interrupt in the
low-level code and returning to the guest) and we have pulled the
guest context from the XIVE. At that point we check a flag in the
stack frame to see whether we came in via the old path and the new
path; if we came in via the new path then we go back to C code to do
the rest of the process of saving the guest context and restoring the
host context.
The C code is split into separate functions for handling the
OS-accessible state and the hypervisor state, with the idea that the
latter can be replaced by a hypercall when we implement nested
virtualization.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
[mpe: Fix CONFIG_ALTIVEC=n build]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Currently kvmppc_handle_exit_hv() is called with the vcore lock held
because it is called within a for_each_runnable_thread loop.
However, we already unlock the vcore within kvmppc_handle_exit_hv()
under certain circumstances, and this is safe because (a) any vcpus
that become runnable and are added to the runnable set by
kvmppc_run_vcpu() have their vcpu->arch.trap == 0 and can't actually
run in the guest (because the vcore state is VCORE_EXITING), and
(b) for_each_runnable_thread is safe against addition or removal
of vcpus from the runnable set.
Therefore, in order to simplify things for following patches, let's
drop the vcore lock in the for_each_runnable_thread loop, so
kvmppc_handle_exit_hv() gets called without the vcore lock held.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This adds a parameter to __kvmppc_save_tm and __kvmppc_restore_tm
which allows the caller to indicate whether it wants the nonvolatile
register state to be preserved across the call, as required by the C
calling conventions. This parameter being non-zero also causes the
MSR bits that enable TM, FP, VMX and VSX to be preserved. The
condition register and DSCR are now always preserved.
With this, kvmppc_save_tm_hv and kvmppc_restore_tm_hv can be called
from C code provided the 3rd parameter is non-zero. So that these
functions can be called from modules, they now include code to set
the TOC pointer (r2) on entry, as they can call other built-in C
functions which will assume the TOC to have been set.
Also, the fake suspend code in kvmppc_save_tm_hv is modified here to
assume that treclaim in fake-suspend state does not modify any registers,
which is the case on POWER9. This enables the code to be simplified
quite a bit.
_kvmppc_save_tm_pr and _kvmppc_restore_tm_pr become much simpler with
this change, since they now only need to save and restore TAR and pass
1 for the 3rd argument to __kvmppc_{save,restore}_tm.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This streamlines the first part of the code that handles a hypervisor
interrupt that occurred in the guest. With this, all of the real-mode
handling that occurs is done before the "guest_exit_cont" label; once
we get to that label we are committed to exiting to host virtual mode.
Thus the machine check and HMI real-mode handling is moved before that
label.
Also, the code to handle external interrupts is moved out of line, as
is the code that calls kvmppc_realmode_hmi_handler().
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This pulls out the assembler code that is responsible for saving and
restoring the PMU state for the host and guest into separate functions
so they can be used from an alternate entry path. The calling
convention is made compatible with C.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This is based on a patch by Suraj Jitindar Singh.
This moves the code in book3s_hv_rmhandlers.S that generates an
external, decrementer or privileged doorbell interrupt just before
entering the guest to C code in book3s_hv_builtin.c. This is to
make future maintenance and modification easier. The algorithm
expressed in the C code is almost identical to the previous
algorithm.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This removes code that clears the external interrupt pending bit in
the pending_exceptions bitmap. This is left over from an earlier
iteration of the code where this bit was set when an escalation
interrupt arrived in order to wake the vcpu from cede. Currently
we set the vcpu->arch.irq_pending flag instead for this purpose.
Therefore there is no need to do anything with the pending_exceptions
bitmap.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Currently we use two bits in the vcpu pending_exceptions bitmap to
indicate that an external interrupt is pending for the guest, one
for "one-shot" interrupts that are cleared when delivered, and one
for interrupts that persist until cleared by an explicit action of
the OS (e.g. an acknowledge to an interrupt controller). The
BOOK3S_IRQPRIO_EXTERNAL bit is used for one-shot interrupt requests
and BOOK3S_IRQPRIO_EXTERNAL_LEVEL is used for persisting interrupts.
In practice BOOK3S_IRQPRIO_EXTERNAL never gets used, because our
Book3S platforms generally, and pseries in particular, expect
external interrupt requests to persist until they are acknowledged
at the interrupt controller. That combined with the confusion
introduced by having two bits for what is essentially the same thing
makes it attractive to simplify things by only using one bit. This
patch does that.
With this patch there is only BOOK3S_IRQPRIO_EXTERNAL, and by default
it has the semantics of a persisting interrupt. In order to avoid
breaking the ABI, we introduce a new "external_oneshot" flag which
preserves the behaviour of the KVM_INTERRUPT ioctl with the
KVM_INTERRUPT_SET argument.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The kvmppc_gpa_to_ua() helper itself takes care of the permission
bits in the TCE and yet every single caller removes them.
This changes semantics of kvmppc_gpa_to_ua() so it takes TCEs
(which are GPAs + TCE permission bits) to make the callers simpler.
This should cause no behavioural change.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
At the moment if the PUT_TCE{_INDIRECT} handlers fail to update
the hardware tables, we print a warning once, clear the entry and
continue. This is so as at the time the assumption was that if
a VFIO device is hotplugged into the guest, and the userspace replays
virtual DMA mappings (i.e. TCEs) to the hardware tables and if this fails,
then there is nothing useful we can do about it.
However the assumption is not valid as these handlers are not called for
TCE replay (VFIO ioctl interface is used for that) and these handlers
are for new TCEs.
This returns an error to the guest if there is a request which cannot be
processed. By now the only possible failure must be H_TOO_HARD.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|