Age | Commit message (Collapse) | Author |
|
Teach AVR32 to use the "GPIO Library" when exposing its GPIOs, so that signals
on external chips (like GPIO expanders) can easily be used.
This mostly reorganizes some existing logic, with two minor changes in
behavior:
- The PSR registers are used instead of the previous "gpio_mask" values,
matching AT91 behavior and removing some duplication between that role
and that of "pinmux_mask".
- NR_IRQs grew to acommodate a bank of external GPIOs. Eventually this
number should probably become a board-specific config option.
There's a debugfs dump of status for the built-in GPIOs, showing which pins
have deglitching, pullups, or open drain drive enabled, as well as the ID
string used when requesting each IRQ.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Acked-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Cc: Jean Delvare <khali@linux-fr.org>
Cc: Eric Miao <eric.miao@marvell.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Philipp Zabel <philipp.zabel@gmail.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ben Gardner <bgardner@wabtec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The read[bwl] and write[bwl] functions are meant for accessing PCI
devices. How this is achieved on AVR32 is unknown, as there are no
systems with a PCI bridge available yet.
On-chip peripheral access, however, should not depend on how we end
up implementing PCI access, so using __raw_read[bwl]/__raw_write[bwl]
is the right thing to do for on-chip peripherals. This patch converts
the drivers for the static memory controller, interrupt controller,
PIO controller and system manager to use __raw MMIO access.
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.
AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density. The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.
The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf
The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit. It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.
Full data sheet is available from
http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf
while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf
Information about the AT32STK1000 development board can be found at
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918
including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.
Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.
This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.
[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|