summaryrefslogtreecommitdiff
path: root/arch/arm64/kernel/asm-offsets.c
AgeCommit message (Collapse)Author
2019-02-06arm64: Make PMR part of task contextJulien Thierry
In order to replace PSR.I interrupt disabling/enabling with ICC_PMR_EL1 interrupt masking, ICC_PMR_EL1 needs to be saved/restored when taking/returning from an exception. This mimics the way hardware saves and restores PSR.I bit in spsr_el1 for exceptions and ERET. Add PMR to the registers to save in the pt_regs struct upon kernel entry, and restore it before ERET. Also, initialize it to a sane value when creating new tasks. Signed-off-by: Julien Thierry <julien.thierry@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2019-01-21arm64: asm-offsets: remove unused offsetsAndrew Murray
There are a number of offsets defined in asm-offsets.c which no longer have any users. Let's clean this up by removing them. All the remaining offsets are in use. Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Andrew Murray <andrew.murray@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-12-12arm64: enable per-task stack canariesArd Biesheuvel
This enables the use of per-task stack canary values if GCC has support for emitting the stack canary reference relative to the value of sp_el0, which holds the task struct pointer in the arm64 kernel. The $(eval) extends KBUILD_CFLAGS at the moment the make rule is applied, which means asm-offsets.o (which we rely on for the offset value) is built without the arguments, and everything built afterwards has the options set. Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-05-31arm64: KVM: Handle guest's ARCH_WORKAROUND_2 requestsMarc Zyngier
In order to forward the guest's ARCH_WORKAROUND_2 calls to EL3, add a small(-ish) sequence to handle it at EL2. Special care must be taken to track the state of the guest itself by updating the workaround flags. We also rely on patching to enable calls into the firmware. Note that since we need to execute branches, this always executes after the Spectre-v2 mitigation has been applied. Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-04-11arm64: assembler: add macros to conditionally yield the NEON under PREEMPTArd Biesheuvel
Add support macros to conditionally yield the NEON (and thus the CPU) that may be called from the assembler code. In some cases, yielding the NEON involves saving and restoring a non trivial amount of context (especially in the CRC folding algorithms), and so the macro is split into three, and the code in between is only executed when the yield path is taken, allowing the context to be preserved. The third macro takes an optional label argument that marks the resume path after a yield has been performed. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-19KVM: arm64: Avoid storing the vcpu pointer on the stackChristoffer Dall
We already have the percpu area for the host cpu state, which points to the VCPU, so there's no need to store the VCPU pointer on the stack on every context switch. We can be a little more clever and just use tpidr_el2 for the percpu offset and load the VCPU pointer from the host context. This has the benefit of being able to retrieve the host context even when our stack is corrupted, and it has a potential performance benefit because we trade a store plus a load for an mrs and a load on a round trip to the guest. This does require us to calculate the percpu offset without including the offset from the kernel mapping of the percpu array to the linear mapping of the array (which is what we store in tpidr_el1), because a PC-relative generated address in EL2 is already giving us the hyp alias of the linear mapping of a kernel address. We do this in __cpu_init_hyp_mode() by using kvm_ksym_ref(). The code that accesses ESR_EL2 was previously using an alternative to use the _EL1 accessor on VHE systems, but this was actually unnecessary as the _EL1 accessor aliases the ESR_EL2 register on VHE, and the _EL2 accessor does the same thing on both systems. Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-01-16KVM: arm64: Handle RAS SErrors from EL2 on guest exitJames Morse
We expect to have firmware-first handling of RAS SErrors, with errors notified via an APEI method. For systems without firmware-first, add some minimal handling to KVM. There are two ways KVM can take an SError due to a guest, either may be a RAS error: we exit the guest due to an SError routed to EL2 by HCR_EL2.AMO, or we take an SError from EL2 when we unmask PSTATE.A from __guest_exit. The current SError from EL2 code unmasks SError and tries to fence any pending SError into a single instruction window. It then leaves SError unmasked. With the v8.2 RAS Extensions we may take an SError for a 'corrected' error, but KVM is only able to handle SError from EL2 if they occur during this single instruction window... The RAS Extensions give us a new instruction to synchronise and consume SErrors. The RAS Extensions document (ARM DDI0587), '2.4.1 ESB and Unrecoverable errors' describes ESB as synchronising SError interrupts generated by 'instructions, translation table walks, hardware updates to the translation tables, and instruction fetches on the same PE'. This makes ESB equivalent to KVMs existing 'dsb, mrs-daifclr, isb' sequence. Use the alternatives to synchronise and consume any SError using ESB instead of unmasking and taking the SError. Set ARM_EXIT_WITH_SERROR_BIT in the exit_code so that we can restart the vcpu if it turns out this SError has no impact on the vcpu. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-01-13arm64: kernel: Add arch-specific SDEI entry code and CPU maskingJames Morse
The Software Delegated Exception Interface (SDEI) is an ARM standard for registering callbacks from the platform firmware into the OS. This is typically used to implement RAS notifications. Such notifications enter the kernel at the registered entry-point with the register values of the interrupted CPU context. Because this is not a CPU exception, it cannot reuse the existing entry code. (crucially we don't implicitly know which exception level we interrupted), Add the entry point to entry.S to set us up for calling into C code. If the event interrupted code that had interrupts masked, we always return to that location. Otherwise we pretend this was an IRQ, and use SDEI's complete_and_resume call to return to vbar_el1 + offset. This allows the kernel to deliver signals to user space processes. For KVM this triggers the world switch, a quick spin round vcpu_run, then back into the guest, unless there are pending signals. Add sdei_mask_local_cpu() calls to the smp_send_stop() code, this covers the panic() code-path, which doesn't invoke cpuhotplug notifiers. Because we can interrupt entry-from/exit-to another EL, we can't trust the value in sp_el0 or x29, even if we interrupted the kernel, in this case the code in entry.S will save/restore sp_el0 and use the value in __entry_task. When we have VMAP stacks we can interrupt the stack-overflow test, which stirs x0 into sp, meaning we have to have our own VMAP stacks. For now these are allocated when we probe the interface. Future patches will add refcounting hooks to allow the arch code to allocate them lazily. Signed-off-by: James Morse <james.morse@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-12-11arm64: mm: Map entry trampoline into trampoline and kernel page tablesWill Deacon
The exception entry trampoline needs to be mapped at the same virtual address in both the trampoline page table (which maps nothing else) and also the kernel page table, so that we can swizzle TTBR1_EL1 on exceptions from and return to EL0. This patch maps the trampoline at a fixed virtual address in the fixmap area of the kernel virtual address space, which allows the kernel proper to be randomized with respect to the trampoline when KASLR is enabled. Reviewed-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Laura Abbott <labbott@redhat.com> Tested-by: Shanker Donthineni <shankerd@codeaurora.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
2017-08-09arm64: unwind: reference pt_regs via embedded stack frameArd Biesheuvel
As it turns out, the unwind code is slightly broken, and probably has been for a while. The problem is in the dumping of the exception stack, which is intended to dump the contents of the pt_regs struct at each level in the call stack where an exception was taken and routed to a routine marked as __exception (which means its stack frame is right below the pt_regs struct on the stack). 'Right below the pt_regs struct' is ill defined, though: the unwind code assigns 'frame pointer + 0x10' to the .sp member of the stackframe struct at each level, and dump_backtrace() happily dereferences that as the pt_regs pointer when encountering an __exception routine. However, the actual size of the stack frame created by this routine (which could be one of many __exception routines we have in the kernel) is not known, and so frame.sp is pretty useless to figure out where struct pt_regs really is. So it seems the only way to ensure that we can find our struct pt_regs when walking the stack frames is to put it at a known fixed offset of the stack frame pointer that is passed to such __exception routines. The simplest way to do that is to put it inside pt_regs itself, which is the main change implemented by this patch. As a bonus, doing this allows us to get rid of a fair amount of cruft related to walking from one stack to the other, which is especially nice since we intend to introduce yet another stack for overflow handling once we add support for vmapped stacks. It also fixes an inconsistency where we only add a stack frame pointing to ELR_EL1 if we are executing from the IRQ stack but not when we are executing from the task stack. To consistly identify exceptions regs even in the presence of exceptions taken from entry code, we must check whether the next frame was created by entry text, rather than whether the current frame was crated by exception text. To avoid backtracing using PCs that fall in the idmap, or are controlled by userspace, we must explcitly zero the FP and LR in startup paths, and must ensure that the frame embedded in pt_regs is zeroed upon entry from EL0. To avoid these NULL entries showin in the backtrace, unwind_frame() is updated to avoid them. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> [Mark: compare current frame against .entry.text, avoid bogus PCs] Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will.deacon@arm.com>
2017-02-03arm: kernel: Add SMC structure parameterAndy Gross
This patch adds a quirk parameter to the arm_smccc_(smc/hvc) calls. The quirk structure allows for specialized SMC operations due to SoC specific requirements. The current arm_smccc_(smc/hvc) is renamed and macros are used instead to specify the standard arm_smccc_(smc/hvc) or the arm_smccc_(smc/hvc)_quirk function. This patch and partial implementation was suggested by Will Deacon. Signed-off-by: Andy Gross <andy.gross@linaro.org> Reviewed-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-11-21arm64: Introduce uaccess_{disable,enable} functionality based on TTBR0_EL1Catalin Marinas
This patch adds the uaccess macros/functions to disable access to user space by setting TTBR0_EL1 to a reserved zeroed page. Since the value written to TTBR0_EL1 must be a physical address, for simplicity this patch introduces a reserved_ttbr0 page at a constant offset from swapper_pg_dir. The uaccess_disable code uses the ttbr1_el1 value adjusted by the reserved_ttbr0 offset. Enabling access to user is done by restoring TTBR0_EL1 with the value from the struct thread_info ttbr0 variable. Interrupts must be disabled during the uaccess_ttbr0_enable code to ensure the atomicity of the thread_info.ttbr0 read and TTBR0_EL1 write. This patch also moves the get_thread_info asm macro from entry.S to assembler.h for reuse in the uaccess_ttbr0_* macros. Cc: Will Deacon <will.deacon@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-11-11arm64: split thread_info from task stackMark Rutland
This patch moves arm64's struct thread_info from the task stack into task_struct. This protects thread_info from corruption in the case of stack overflows, and makes its address harder to determine if stack addresses are leaked, making a number of attacks more difficult. Precise detection and handling of overflow is left for subsequent patches. Largely, this involves changing code to store the task_struct in sp_el0, and acquire the thread_info from the task struct. Core code now implements current_thread_info(), and as noted in <linux/sched.h> this relies on offsetof(task_struct, thread_info) == 0, enforced by core code. This change means that the 'tsk' register used in entry.S now points to a task_struct, rather than a thread_info as it used to. To make this clear, the TI_* field offsets are renamed to TSK_TI_*, with asm-offsets appropriately updated to account for the structural change. Userspace clobbers sp_el0, and we can no longer restore this from the stack. Instead, the current task is cached in a per-cpu variable that we can safely access from early assembly as interrupts are disabled (and we are thus not preemptible). Both secondary entry and idle are updated to stash the sp and task pointer separately. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Laura Abbott <labbott@redhat.com> Cc: AKASHI Takahiro <takahiro.akashi@linaro.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: James Morse <james.morse@arm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-11-11arm64: asm-offsets: remove unused definitionsMark Rutland
Subsequent patches will move the thread_info::{task,cpu} fields, and the current TI_{TASK,CPU} offset definitions are not used anywhere. This patch removes the redundant definitions. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Laura Abbott <labbott@redhat.com> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-09-09arm64: Work around systems with mismatched cache line sizesSuzuki K Poulose
Systems with differing CPU i-cache/d-cache line sizes can cause problems with the cache management by software when the execution is migrated from one to another. Usually, the application reads the cache size on a CPU and then uses that length to perform cache operations. However, if it gets migrated to another CPU with a smaller cache line size, things could go completely wrong. To prevent such cases, always use the smallest cache line size among the CPUs. The kernel CPU feature infrastructure already keeps track of the safe value for all CPUID registers including CTR. This patch works around the problem by : For kernel, dynamically patch the kernel to read the cache size from the system wide copy of CTR_EL0. For applications, trap read accesses to CTR_EL0 (by clearing the SCTLR.UCT) and emulate the mrs instruction to return the system wide safe value of CTR_EL0. For faster access (i.e, avoiding to lookup the system wide value of CTR_EL0 via read_system_reg), we keep track of the pointer to table entry for CTR_EL0 in the CPU feature infrastructure. Cc: Mark Rutland <mark.rutland@arm.com> Cc: Andre Przywara <andre.przywara@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-07-27Merge tag 'arm64-upstream' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: - Kexec support for arm64 - Kprobes support - Expose MIDR_EL1 and REVIDR_EL1 CPU identification registers to sysfs - Trapping of user space cache maintenance operations and emulation in the kernel (CPU errata workaround) - Clean-up of the early page tables creation (kernel linear mapping, EFI run-time maps) to avoid splitting larger blocks (e.g. pmds) into smaller ones (e.g. ptes) - VDSO support for CLOCK_MONOTONIC_RAW in clock_gettime() - ARCH_HAS_KCOV enabled for arm64 - Optimise IP checksum helpers - SWIOTLB optimisation to only allocate/initialise the buffer if the available RAM is beyond the 32-bit mask - Properly handle the "nosmp" command line argument - Fix for the initialisation of the CPU debug state during early boot - vdso-offsets.h build dependency workaround - Build fix when RANDOMIZE_BASE is enabled with MODULES off * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (64 commits) arm64: arm: Fix-up the removal of the arm64 regs_query_register_name() prototype arm64: Only select ARM64_MODULE_PLTS if MODULES=y arm64: mm: run pgtable_page_ctor() on non-swapper translation table pages arm64: mm: make create_mapping_late() non-allocating arm64: Honor nosmp kernel command line option arm64: Fix incorrect per-cpu usage for boot CPU arm64: kprobes: Add KASAN instrumentation around stack accesses arm64: kprobes: Cleanup jprobe_return arm64: kprobes: Fix overflow when saving stack arm64: kprobes: WARN if attempting to step with PSTATE.D=1 arm64: debug: remove unused local_dbg_{enable, disable} macros arm64: debug: remove redundant spsr manipulation arm64: debug: unmask PSTATE.D earlier arm64: localise Image objcopy flags arm64: ptrace: remove extra define for CPSR's E bit kprobes: Add arm64 case in kprobe example module arm64: Add kernel return probes support (kretprobes) arm64: Add trampoline code for kretprobes arm64: kprobes instruction simulation support arm64: Treat all entry code as non-kprobe-able ...
2016-07-21Merge branch 'for-next/kprobes' into for-next/coreCatalin Marinas
* kprobes: arm64: kprobes: Add KASAN instrumentation around stack accesses arm64: kprobes: Cleanup jprobe_return arm64: kprobes: Fix overflow when saving stack arm64: kprobes: WARN if attempting to step with PSTATE.D=1 kprobes: Add arm64 case in kprobe example module arm64: Add kernel return probes support (kretprobes) arm64: Add trampoline code for kretprobes arm64: kprobes instruction simulation support arm64: Treat all entry code as non-kprobe-able arm64: Blacklist non-kprobe-able symbol arm64: Kprobes with single stepping support arm64: add conditional instruction simulation support arm64: Add more test functions to insn.c arm64: Add HAVE_REGS_AND_STACK_ACCESS_API feature
2016-07-19arm64: Add trampoline code for kretprobesWilliam Cohen
The trampoline code is used by kretprobes to capture a return from a probed function. This is done by saving the registers, calling the handler, and restoring the registers. The code then returns to the original saved caller return address. It is necessary to do this directly instead of using a software breakpoint because the code used in processing that breakpoint could itself be kprobe'd and cause a problematic reentry into the debug exception handler. Signed-off-by: William Cohen <wcohen@redhat.com> Signed-off-by: David A. Long <dave.long@linaro.org> Acked-by: Masami Hiramatsu <mhiramat@kernel.org> [catalin.marinas@arm.com: removed unnecessary masking of the PSTATE bits] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-07-12arm64: Add support for CLOCK_MONOTONIC_RAW in clock_gettime() vDSOKevin Brodsky
So far the arm64 clock_gettime() vDSO implementation only supported the following clocks, falling back to the syscall for the others: - CLOCK_REALTIME{,_COARSE} - CLOCK_MONOTONIC{,_COARSE} This patch adds support for the CLOCK_MONOTONIC_RAW clock, taking advantage of the recent refactoring of the vDSO time functions. Like the non-_COARSE clocks, this only works when the "arch_sys_counter" clocksource is in use (allowing us to read the current time from the virtual counter register), otherwise we also have to fall back to the syscall. Most of the data is shared with CLOCK_MONOTONIC, and the algorithm is similar. The reference implementation in kernel/time/timekeeping.c shows that: - CLOCK_MONOTONIC = tk->wall_to_monotonic + tk->xtime_sec + timekeeping_get_ns(&tk->tkr_mono) - CLOCK_MONOTONIC_RAW = tk->raw_time + timekeeping_get_ns(&tk->tkr_raw) - tkr_mono and tkr_raw are identical (in particular, same clocksource), except these members: * mult (only mono's multiplier is NTP-adjusted) * xtime_nsec (always 0 for raw) Therefore, tk->raw_time and tkr_raw->mult are now also stored in the vDSO data page. Cc: Ali Saidi <ali.saidi@arm.com> Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com> Reviewed-by: Dave Martin <dave.martin@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-07-07arm64: kernel: Save and restore UAO and addr_limit on exception entryJames Morse
If we take an exception while at EL1, the exception handler inherits the original context's addr_limit and PSTATE.UAO values. To be consistent always reset addr_limit and PSTATE.UAO on (re-)entry to EL1. This prevents accidental re-use of the original context's addr_limit. Based on a similar patch for arm from Russell King. Cc: <stable@vger.kernel.org> # 4.6- Acked-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-04-28arm64: kernel: Add support for hibernate/suspend-to-diskJames Morse
Add support for hibernate/suspend-to-disk. Suspend borrows code from cpu_suspend() to write cpu state onto the stack, before calling swsusp_save() to save the memory image. Restore creates a set of temporary page tables, covering only the linear map, copies the restore code to a 'safe' page, then uses the copy to restore the memory image. The copied code executes in the lower half of the address space, and once complete, restores the original kernel's page tables. It then calls into cpu_resume(), and follows the normal cpu_suspend() path back into the suspend code. To restore a kernel using KASLR, the address of the page tables, and cpu_resume() are stored in the hibernate arch-header and the el2 vectors are pivotted via the 'safe' page in low memory. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Kevin Hilman <khilman@baylibre.com> # Tested on Juno R2 Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-04-28arm64: Change cpu_resume() to enable mmu early then access sleep_sp by vaJames Morse
By enabling the MMU early in cpu_resume(), the sleep_save_sp and stack can be accessed by VA, which avoids the need to convert-addresses and clean to PoC on the suspend path. MMU setup is shared with the boot path, meaning the swapper_pg_dir is restored directly: ttbr1_el1 is no longer saved/restored. struct sleep_save_sp is removed, replacing it with a single array of pointers. cpu_do_{suspend,resume} could be further reduced to not restore: cpacr_el1, mdscr_el1, tcr_el1, vbar_el1 and sctlr_el1, all of which are set by __cpu_setup(). However these values all contain res0 bits that may be used to enable future features. Signed-off-by: James Morse <james.morse@arm.com> Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-04-28arm64: kernel: Rework finisher callback out of __cpu_suspend_enter()James Morse
Hibernate could make use of the cpu_suspend() code to save/restore cpu state, however it needs to be able to return '0' from the 'finisher'. Rework cpu_suspend() so that the finisher is called from C code, independently from the save/restore of cpu state. Space to save the context in is allocated in the caller's stack frame, and passed into __cpu_suspend_enter(). Hibernate's use of this API will look like a copy of the cpu_suspend() function. Signed-off-by: James Morse <james.morse@arm.com> Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-03-17Merge tag 'arm64-upstream' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: "Here are the main arm64 updates for 4.6. There are some relatively intrusive changes to support KASLR, the reworking of the kernel virtual memory layout and initial page table creation. Summary: - Initial page table creation reworked to avoid breaking large block mappings (huge pages) into smaller ones. The ARM architecture requires break-before-make in such cases to avoid TLB conflicts but that's not always possible on live page tables - Kernel virtual memory layout: the kernel image is no longer linked to the bottom of the linear mapping (PAGE_OFFSET) but at the bottom of the vmalloc space, allowing the kernel to be loaded (nearly) anywhere in physical RAM - Kernel ASLR: position independent kernel Image and modules being randomly mapped in the vmalloc space with the randomness is provided by UEFI (efi_get_random_bytes() patches merged via the arm64 tree, acked by Matt Fleming) - Implement relative exception tables for arm64, required by KASLR (initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c but actual x86 conversion to deferred to 4.7 because of the merge dependencies) - Support for the User Access Override feature of ARMv8.2: this allows uaccess functions (get_user etc.) to be implemented using LDTR/STTR instructions. Such instructions, when run by the kernel, perform unprivileged accesses adding an extra level of protection. The set_fs() macro is used to "upgrade" such instruction to privileged accesses via the UAO bit - Half-precision floating point support (part of ARMv8.2) - Optimisations for CPUs with or without a hardware prefetcher (using run-time code patching) - copy_page performance improvement to deal with 128 bytes at a time - Sanity checks on the CPU capabilities (via CPUID) to prevent incompatible secondary CPUs from being brought up (e.g. weird big.LITTLE configurations) - valid_user_regs() reworked for better sanity check of the sigcontext information (restored pstate information) - ACPI parking protocol implementation - CONFIG_DEBUG_RODATA enabled by default - VDSO code marked as read-only - DEBUG_PAGEALLOC support - ARCH_HAS_UBSAN_SANITIZE_ALL enabled - Erratum workaround Cavium ThunderX SoC - set_pte_at() fix for PROT_NONE mappings - Code clean-ups" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (99 commits) arm64: kasan: Fix zero shadow mapping overriding kernel image shadow arm64: kasan: Use actual memory node when populating the kernel image shadow arm64: Update PTE_RDONLY in set_pte_at() for PROT_NONE permission arm64: Fix misspellings in comments. arm64: efi: add missing frame pointer assignment arm64: make mrs_s prefixing implicit in read_cpuid arm64: enable CONFIG_DEBUG_RODATA by default arm64: Rework valid_user_regs arm64: mm: check at build time that PAGE_OFFSET divides the VA space evenly arm64: KVM: Move kvm_call_hyp back to its original localtion arm64: mm: treat memstart_addr as a signed quantity arm64: mm: list kernel sections in order arm64: lse: deal with clobbered IP registers after branch via PLT arm64: mm: dump: Use VA_START directly instead of private LOWEST_ADDR arm64: kconfig: add submenu for 8.2 architectural features arm64: kernel: acpi: fix ioremap in ACPI parking protocol cpu_postboot arm64: Add support for Half precision floating point arm64: Remove fixmap include fragility arm64: Add workaround for Cavium erratum 27456 arm64: mm: Mark .rodata as RO ...
2016-02-29arm64: KVM: Move most of the fault decoding to CMarc Zyngier
The fault decoding process (including computing the IPA in the case of a permission fault) would be much better done in C code, as we have a reasonable infrastructure to deal with the VHE/non-VHE differences. Let's move the whole thing to C, including the workaround for erratum 834220, and just patch the odd ESR_EL2 access remaining in hyp-entry.S. Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2016-02-25arm64: Handle early CPU boot failuresSuzuki K Poulose
A secondary CPU could fail to come online due to insufficient capabilities and could simply die or loop in the kernel. e.g, a CPU with no support for the selected kernel PAGE_SIZE loops in kernel with MMU turned off. or a hotplugged CPU which doesn't have one of the advertised system capability will die during the activation. There is no way to synchronise the status of the failing CPU back to the master. This patch solves the issue by adding a field to the secondary_data which can be updated by the failing CPU. If the secondary CPU fails even before turning the MMU on, it updates the status in a special variable reserved in the head.txt section to make sure that the update can be cache invalidated safely without possible sharing of cache write back granule. Here are the possible states : -1. CPU_MMU_OFF - Initial value set by the master CPU, this value indicates that the CPU could not turn the MMU on, hence the status could not be reliably updated in the secondary_data. Instead, the CPU has updated the status @ __early_cpu_boot_status. 0. CPU_BOOT_SUCCESS - CPU has booted successfully. 1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the master CPU to synchronise by issuing a cpu_ops->cpu_kill. 2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is looping in the kernel. This information could be used by say, kexec to check if it is really safe to do a kexec reboot. 3. CPU_PANIC_KERNEL - CPU detected some serious issues which requires kernel to crash immediately. The secondary CPU cannot call panic() until it has initialised the GIC. This flag can be used to instruct the master to do so. Cc: Mark Rutland <mark.rutland@arm.com> Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> [catalin.marinas@arm.com: conflict resolution] [catalin.marinas@arm.com: converted "status" from int to long] [catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-12Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull KVM updates from Paolo Bonzini: "PPC changes will come next week. - s390: Support for runtime instrumentation within guests, support of 248 VCPUs. - ARM: rewrite of the arm64 world switch in C, support for 16-bit VM identifiers. Performance counter virtualization missed the boat. - x86: Support for more Hyper-V features (synthetic interrupt controller), MMU cleanups" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (115 commits) kvm: x86: Fix vmwrite to SECONDARY_VM_EXEC_CONTROL kvm/x86: Hyper-V SynIC timers tracepoints kvm/x86: Hyper-V SynIC tracepoints kvm/x86: Update SynIC timers on guest entry only kvm/x86: Skip SynIC vector check for QEMU side kvm/x86: Hyper-V fix SynIC timer disabling condition kvm/x86: Reorg stimer_expiration() to better control timer restart kvm/x86: Hyper-V unify stimer_start() and stimer_restart() kvm/x86: Drop stimer_stop() function kvm/x86: Hyper-V timers fix incorrect logical operation KVM: move architecture-dependent requests to arch/ KVM: renumber vcpu->request bits KVM: document which architecture uses each request bit KVM: Remove unused KVM_REQ_KICK to save a bit in vcpu->requests kvm: x86: Check kvm_write_guest return value in kvm_write_wall_clock KVM: s390: implement the RI support of guest kvm/s390: drop unpaired smp_mb kvm: x86: fix comment about {mmu,nested_mmu}.gva_to_gpa KVM: x86: MMU: Use clear_page() instead of init_shadow_page_table() arm/arm64: KVM: Detect vGIC presence at runtime ...
2016-01-04ARM: 8480/2: arm64: add implementation for arm-smcccJens Wiklander
Adds implementation for arm-smccc and enables CONFIG_HAVE_SMCCC. Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2015-12-14arm64: KVM: Cleanup asm-offset.cMarc Zyngier
As we've now rewritten most of our code-base in C, most of the KVM-specific code in asm-offset.c is useless. Delete-time again! Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
2015-12-14arm64: KVM: Turn system register numbers to an enumMarc Zyngier
Having the system register numbers as #defines has been a pain since day one, as the ordering is pretty fragile, and moving things around leads to renumbering and epic conflict resolutions. Now that we're mostly acessing the sysreg file in C, an enum is a much better type to use, and we can clean things up a bit. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
2015-10-07arm64: mm: rewrite ASID allocator and MM context-switching codeWill Deacon
Our current switch_mm implementation suffers from a number of problems: (1) The ASID allocator relies on IPIs to synchronise the CPUs on a rollover event (2) Because of (1), we cannot allocate ASIDs with interrupts disabled and therefore make use of a TIF_SWITCH_MM flag to postpone the actual switch to finish_arch_post_lock_switch (3) We run context switch with a reserved (invalid) TTBR0 value, even though the ASID and pgd are updated atomically (4) We take a global spinlock (cpu_asid_lock) during context-switch (5) We use h/w broadcast TLB operations when they are not required (e.g. in flush_context) This patch addresses these problems by rewriting the ASID algorithm to match the bitmap-based arch/arm/ implementation more closely. This in turn allows us to remove much of the complications surrounding switch_mm, including the ugly thread flag. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-08-12arm64: KVM: remove remaining reference to vgic_sr_vectorsVladimir Murzin
Since commit 8a14849 (arm64: KVM: Switch vgic save/restore to alternative_insn) vgic_sr_vectors is not used anymore, so remove remaining leftovers and kill the structure. Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2015-07-21KVM: arm64: introduce vcpu->arch.debug_ptrAlex Bennée
This introduces a level of indirection for the debug registers. Instead of using the sys_regs[] directly we store registers in a structure in the vcpu. The new kvm_arm_reset_debug_ptr() sets the debug ptr to the guest context. Because we no longer give the sys_regs offset for the sys_reg_desc->reg field, but instead the index into a debug-specific struct we need to add a number of additional trap functions for each register. Also as the generic generic user-space access code no longer works we have introduced a new pair of function pointers to the sys_reg_desc structure to override the generic code when needed. Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2015-07-21KVM: arm: introduce kvm_arm_init/setup/clear_debugAlex Bennée
This is a precursor for later patches which will need to do more to setup debug state before entering the hyp.S switch code. The existing functionality for setting mdcr_el2 has been moved out of hyp.S and now uses the value kept in vcpu->arch.mdcr_el2. As the assembler used to previously mask and preserve MDCR_EL2.HPMN I've had to add a mechanism to save the value of mdcr_el2 as a per-cpu variable during the initialisation code. The kernel never sets this number so we are assuming the bootcode has set up the correct value here. This also moves the conditional setting of the TDA bit from the hyp code into the C code which is currently used for the lazy debug register context switch code. Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2015-06-12arm64: KVM: Switch vgic save/restore to alternative_insnMarc Zyngier
So far, we configured the world-switch by having a small array of pointers to the save and restore functions, depending on the GIC used on the platform. Loading these values each time is a bit silly (they never change), and it makes sense to rely on the instruction patching instead. This leads to a nice cleanup of the code. Acked-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-04-16Merge tag 'arm64-upstream' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Will Deacon: "Here are the core arm64 updates for 4.1. Highlights include a significant rework to head.S (allowing us to boot on machines with physical memory at a really high address), an AES performance boost on Cortex-A57 and the ability to run a 32-bit userspace with 64k pages (although this requires said userspace to be built with a recent binutils). The head.S rework spilt over into KVM, so there are some changes under arch/arm/ which have been acked by Marc Zyngier (KVM co-maintainer). In particular, the linker script changes caused us some issues in -next, so there are a few merge commits where we had to apply fixes on top of a stable branch. Other changes include: - AES performance boost for Cortex-A57 - AArch32 (compat) userspace with 64k pages - Cortex-A53 erratum workaround for #845719 - defconfig updates (new platforms, PCI, ...)" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (39 commits) arm64: fix midr range for Cortex-A57 erratum 832075 arm64: errata: add workaround for cortex-a53 erratum #845719 arm64: Use bool function return values of true/false not 1/0 arm64: defconfig: updates for 4.1 arm64: Extract feature parsing code from cpu_errata.c arm64: alternative: Allow immediate branch as alternative instruction arm64: insn: Add aarch64_insn_decode_immediate ARM: kvm: round HYP section to page size instead of log2 upper bound ARM: kvm: assert on HYP section boundaries not actual code size arm64: head.S: ensure idmap_t0sz is visible arm64: pmu: add support for interrupt-affinity property dt: pmu: extend ARM PMU binding to allow for explicit interrupt affinity arm64: head.S: ensure visibility of page tables arm64: KVM: use ID map with increased VA range if required arm64: mm: increase VA range of identity map ARM: kvm: implement replacement for ld's LOG2CEIL() arm64: proc: remove unused cpu_get_pgd macro arm64: enforce x1|x2|x3 == 0 upon kernel entry as per boot protocol arm64: remove __calc_phys_offset arm64: merge __enable_mmu and __turn_mmu_on ...
2015-04-12arm64: Remove signal translation and exec_domainRichard Weinberger
As execution domain support is gone we can remove signal translation from the signal code and remove exec_domain from thread_info. Signed-off-by: Richard Weinberger <richard@nod.at>
2015-03-19arm64: Get rid of struct cpu_tableMarc Zyngier
struct cpu_table is an artifact left from the (very) early days of the arm64 port, and its only real use is to allow the most beautiful "AArch64 Processor" string to be displayed at boot time. Really? Yes, really. Let's get rid of it. In order to avoid another BogoMips-gate, the aforementioned string is preserved. Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-02-13Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull KVM update from Paolo Bonzini: "Fairly small update, but there are some interesting new features. Common: Optional support for adding a small amount of polling on each HLT instruction executed in the guest (or equivalent for other architectures). This can improve latency up to 50% on some scenarios (e.g. O_DSYNC writes or TCP_RR netperf tests). This also has to be enabled manually for now, but the plan is to auto-tune this in the future. ARM/ARM64: The highlights are support for GICv3 emulation and dirty page tracking s390: Several optimizations and bugfixes. Also a first: a feature exposed by KVM (UUID and long guest name in /proc/sysinfo) before it is available in IBM's hypervisor! :) MIPS: Bugfixes. x86: Support for PML (page modification logging, a new feature in Broadwell Xeons that speeds up dirty page tracking), nested virtualization improvements (nested APICv---a nice optimization), usual round of emulation fixes. There is also a new option to reduce latency of the TSC deadline timer in the guest; this needs to be tuned manually. Some commits are common between this pull and Catalin's; I see you have already included his tree. Powerpc: Nothing yet. The KVM/PPC changes will come in through the PPC maintainers, because I haven't received them yet and I might end up being offline for some part of next week" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (130 commits) KVM: ia64: drop kvm.h from installed user headers KVM: x86: fix build with !CONFIG_SMP KVM: x86: emulate: correct page fault error code for NoWrite instructions KVM: Disable compat ioctl for s390 KVM: s390: add cpu model support KVM: s390: use facilities and cpu_id per KVM KVM: s390/CPACF: Choose crypto control block format s390/kernel: Update /proc/sysinfo file with Extended Name and UUID KVM: s390: reenable LPP facility KVM: s390: floating irqs: fix user triggerable endless loop kvm: add halt_poll_ns module parameter kvm: remove KVM_MMIO_SIZE KVM: MIPS: Don't leak FPU/DSP to guest KVM: MIPS: Disable HTW while in guest KVM: nVMX: Enable nested posted interrupt processing KVM: nVMX: Enable nested virtual interrupt delivery KVM: nVMX: Enable nested apic register virtualization KVM: nVMX: Make nested control MSRs per-cpu KVM: nVMX: Enable nested virtualize x2apic mode KVM: nVMX: Prepare for using hardware MSR bitmap ...
2015-01-27arm64: kernel: remove ARM64_CPU_SUSPEND config optionLorenzo Pieralisi
ARM64_CPU_SUSPEND config option was introduced to make code providing context save/restore selectable only on platforms requiring power management capabilities. Currently ARM64_CPU_SUSPEND depends on the PM_SLEEP config option which in turn is set by the SUSPEND config option. The introduction of CPU_IDLE for arm64 requires that code configured by ARM64_CPU_SUSPEND (context save/restore) should be compiled in in order to enable the CPU idle driver to rely on CPU operations carrying out context save/restore. The ARM64_CPUIDLE config option (ARM64 generic idle driver) is therefore forced to select ARM64_CPU_SUSPEND, even if there may be (ie PM_SLEEP) failed dependencies, which is not a clean way of handling the kernel configuration option. For these reasons, this patch removes the ARM64_CPU_SUSPEND config option and makes the context save/restore dependent on CPU_PM, which is selected whenever either SUSPEND or CPU_IDLE are configured, cleaning up dependencies in the process. This way, code previously configured through ARM64_CPU_SUSPEND is compiled in whenever a power management subsystem requires it to be present in the kernel (SUSPEND || CPU_IDLE), which is the behaviour expected on ARM64 kernels. The cpu_suspend and cpu_init_idle CPU operations are added only if CPU_IDLE is selected, since they are CPU_IDLE specific methods and should be grouped and defined accordingly. PSCI CPU operations are updated to reflect the introduced changes. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Will Deacon <will.deacon@arm.com> Cc: Krzysztof Kozlowski <k.kozlowski@samsung.com> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-01-20arm/arm64: KVM: make the value of ICC_SRE_EL1 a per-VM variableAndre Przywara
ICC_SRE_EL1 is a system register allowing msr/mrs accesses to the GIC CPU interface for EL1 (guests). Currently we force it to 0, but for proper GICv3 support we have to allow guests to use it (depending on their selected virtual GIC model). So add ICC_SRE_EL1 to the list of saved/restored registers on a world switch, but actually disallow a guest to change it by only restoring a fixed, once-initialized value. This value depends on the GIC model userland has chosen for a guest. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2014-07-11arm64: KVM: implement lazy world switch for debug registersMarc Zyngier
Implement switching of the debug registers. While the number of registers is massive, CPUs usually don't implement them all (A57 has 6 breakpoints and 4 watchpoints, which gives us a total of 22 registers "only"). Also, we only save/restore them when MDSCR_EL1 has debug enabled, or when we've flagged the debug registers as dirty. It means that most of the time, we only save/restore MDSCR_EL1. Reviewed-by: Anup Patel <anup.patel@linaro.org> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-07-11arm64: KVM: vgic: add GICv3 world switchMarc Zyngier
Introduce the GICv3 world switch code used to save/restore the GICv3 context. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-07-11arm64: KVM: split GICv2 world switch from hyp codeMarc Zyngier
Move the GICv2 world switch code into its own file, and add the necessary indirection to the arm64 switch code. Also introduce a new type field to the vgic_params structure. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2014-07-11KVM: arm/arm64: vgic: move GICv2 registers to their own structureMarc Zyngier
In order to make way for the GICv3 registers, move the v2-specific registers to their own structure. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2013-12-16arm64: kernel: cpu_{suspend/resume} implementationLorenzo Pieralisi
Kernel subsystems like CPU idle and suspend to RAM require a generic mechanism to suspend a processor, save its context and put it into a quiescent state. The cpu_{suspend}/{resume} implementation provides such a framework through a kernel interface allowing to save/restore registers, flush the context to DRAM and suspend/resume to/from low-power states where processor context may be lost. The CPU suspend implementation relies on the suspend protocol registered in CPU operations to carry out a suspend request after context is saved and flushed to DRAM. The cpu_suspend interface: int cpu_suspend(unsigned long arg); allows to pass an opaque parameter that is handed over to the suspend CPU operations back-end so that it can take action according to the semantics attached to it. The arg parameter allows suspend to RAM and CPU idle drivers to communicate to suspend protocol back-ends; it requires standardization so that the interface can be reused seamlessly across systems, paving the way for generic drivers. Context memory is allocated on the stack, whose address is stashed in a per-cpu variable to keep track of it and passed to core functions that save/restore the registers required by the architecture. Even though, upon successful execution, the cpu_suspend function shuts down the suspending processor, the warm boot resume mechanism, based on the cpu_resume function, makes the resume path operate as a cpu_suspend function return, so that cpu_suspend can be treated as a C function by the caller, which simplifies coding the PM drivers that rely on the cpu_suspend API. Upon context save, the minimal amount of memory is flushed to DRAM so that it can be retrieved when the MMU is off and caches are not searched. The suspend CPU operation, depending on the required operations (eg CPU vs Cluster shutdown) is in charge of flushing the cache hierarchy either implicitly (by calling firmware implementations like PSCI) or explicitly by executing the required cache maintainance functions. Debug exceptions are disabled during cpu_{suspend}/{resume} operations so that debug registers can be saved and restored properly preventing preemption from debug agents enabled in the kernel. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
2013-07-04arm64: KVM: Kconfig integrationMarc Zyngier
Finally plug KVM/arm64 into the config system, making it possible to enable KVM support on AArch64 CPUs. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2013-06-12arm64: KVM: HYP mode world switch implementationMarc Zyngier
The HYP mode world switch in all its glory. Implements save/restore of host/guest registers, EL2 trapping, IPA resolution, and additional services (tlb invalidation). Reviewed-by: Christopher Covington <cov@codeaurora.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2012-09-17arm64: Assembly macros and definitionsCatalin Marinas
This patch introduces several assembly macros and definitions used in the .S files across arch/arm64/ like IRQ disabling/enabling, together with asm-offsets.c. Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Tony Lindgren <tony@atomide.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Nicolas Pitre <nico@linaro.org> Acked-by: Olof Johansson <olof@lixom.net> Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>