Age | Commit message (Collapse) | Author |
|
Pull KVM updates from Radim Krčmář:
"First batch of KVM changes for 4.15
Common:
- Python 3 support in kvm_stat
- Accounting of slabs to kmemcg
ARM:
- Optimized arch timer handling for KVM/ARM
- Improvements to the VGIC ITS code and introduction of an ITS reset
ioctl
- Unification of the 32-bit fault injection logic
- More exact external abort matching logic
PPC:
- Support for running hashed page table (HPT) MMU mode on a host that
is using the radix MMU mode; single threaded mode on POWER 9 is
added as a pre-requisite
- Resolution of merge conflicts with the last second 4.14 HPT fixes
- Fixes and cleanups
s390:
- Some initial preparation patches for exitless interrupts and crypto
- New capability for AIS migration
- Fixes
x86:
- Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs,
and after-reset state
- Refined dependencies for VMX features
- Fixes for nested SMI injection
- A lot of cleanups"
* tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (89 commits)
KVM: s390: provide a capability for AIS state migration
KVM: s390: clear_io_irq() requests are not expected for adapter interrupts
KVM: s390: abstract conversion between isc and enum irq_types
KVM: s390: vsie: use common code functions for pinning
KVM: s390: SIE considerations for AP Queue virtualization
KVM: s390: document memory ordering for kvm_s390_vcpu_wakeup
KVM: PPC: Book3S HV: Cosmetic post-merge cleanups
KVM: arm/arm64: fix the incompatible matching for external abort
KVM: arm/arm64: Unify 32bit fault injection
KVM: arm/arm64: vgic-its: Implement KVM_DEV_ARM_ITS_CTRL_RESET
KVM: arm/arm64: Document KVM_DEV_ARM_ITS_CTRL_RESET
KVM: arm/arm64: vgic-its: Free caches when GITS_BASER Valid bit is cleared
KVM: arm/arm64: vgic-its: New helper functions to free the caches
KVM: arm/arm64: vgic-its: Remove kvm_its_unmap_device
arm/arm64: KVM: Load the timer state when enabling the timer
KVM: arm/arm64: Rework kvm_timer_should_fire
KVM: arm/arm64: Get rid of kvm_timer_flush_hwstate
KVM: arm/arm64: Avoid phys timer emulation in vcpu entry/exit
KVM: arm/arm64: Move phys_timer_emulate function
KVM: arm/arm64: Use kvm_arm_timer_set/get_reg for guest register traps
...
|
|
Both arm and arm64 implementations are capable of injecting
faults, and yet have completely divergent implementations,
leading to different bugs and reduced maintainability.
Let's elect the arm64 version as the canonical one
and move it into aarch32.c, which is common to both
architectures.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
As we are about to be lazy with saving and restoring the timer
registers, we prepare by moving all possible timer configuration logic
out of the hyp code. All virtual timer registers can be programmed from
EL1 and since the arch timer is always a level triggered interrupt we
can safely do this with interrupts disabled in the host kernel on the
way to the guest without taking vtimer interrupts in the host kernel
(yet).
The downside is that the cntvoff register can only be programmed from
hyp mode, so we jump into hyp mode and back to program it. This is also
safe, because the host kernel doesn't use the virtual timer in the KVM
code. It may add a little performance performance penalty, but only
until following commits where we move this operation to vcpu load/put.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Pull KVM fixes from Paolo Bonzini:
"Fixes for interrupt controller emulation in ARM/ARM64 and x86, plus a
one-liner x86 KVM guest fix"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: x86: Update APICv on APIC reset
KVM: VMX: Do not fully reset PI descriptor on vCPU reset
kvm: Return -ENODEV from update_persistent_clock
KVM: arm/arm64: vgic-its: Check GITS_BASER Valid bit before saving tables
KVM: arm/arm64: vgic-its: Check CBASER/BASER validity before enabling the ITS
KVM: arm/arm64: vgic-its: Fix vgic_its_restore_collection_table returned value
KVM: arm/arm64: vgic-its: Fix return value for device table restore
arm/arm64: kvm: Disable branch profiling in HYP code
arm/arm64: kvm: Move initialization completion message
arm/arm64: KVM: set right LR register value for 32 bit guest when inject abort
KVM: arm64: its: Fix missing dynamic allocation check in scan_its_table
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When HYP code runs into branch profiling code, it attempts to jump to
unmapped memory, causing a HYP Panic.
Disable the branch profiling for code designed to run at HYP mode.
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
When a exception is trapped to EL2, hardware uses ELR_ELx to hold
the current fault instruction address. If KVM wants to inject a
abort to 32 bit guest, it needs to set the LR register for the
guest to emulate this abort happened in the guest. Because ARM32
architecture is pipelined execution, so the LR value has an offset to
the fault instruction address.
The offsets applied to Link value for exceptions as shown below,
which should be added for the ARM32 link register(LR).
Table taken from ARMv8 ARM DDI0487B-B, table G1-10:
Exception Offset, for PE state of:
A32 T32
Undefined Instruction +4 +2
Prefetch Abort +4 +4
Data Abort +8 +8
IRQ or FIQ +4 +4
[ Removed unused variables in inject_abt to avoid compile warnings.
-- Christoffer ]
Cc: <stable@vger.kernel.org>
Signed-off-by: Dongjiu Geng <gengdongjiu@huawei.com>
Tested-by: Haibin Zhang <zhanghaibin7@huawei.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
This implements the kvm_arch_vcpu_in_kernel() for ARM, and adjusts
the calls to kvm_vcpu_on_spin().
Signed-off-by: Longpeng(Mike) <longpeng2@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
If a vcpu exits due to request a user mode spinlock, then
the spinlock-holder may be preempted in user mode or kernel mode.
(Note that not all architectures trap spin loops in user mode,
only AMD x86 and ARM/ARM64 currently do).
But if a vcpu exits in kernel mode, then the holder must be
preempted in kernel mode, so we should choose a vcpu in kernel mode
as a more likely candidate for the lock holder.
This introduces kvm_arch_vcpu_in_kernel() to decide whether the
vcpu is in kernel-mode when it's preempted. kvm_vcpu_on_spin's
new argument says the same of the spinning VCPU.
Signed-off-by: Longpeng(Mike) <longpeng2@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
|
|
First we define an ABI using the vcpu devices that lets userspace set
the interrupt numbers for the various timers on both the 32-bit and
64-bit KVM/ARM implementations.
Second, we add the definitions for the groups and attributes introduced
by the above ABI. (We add the PMU define on the 32-bit side as well for
symmetry and it may get used some day.)
Third, we set up the arch-specific vcpu device operation handlers to
call into the timer code for anything related to the
KVM_ARM_VCPU_TIMER_CTRL group.
Fourth, we implement support for getting and setting the timer interrupt
numbers using the above defined ABI in the arch timer code.
Fifth, we introduce error checking upon enabling the arch timer (which
is called when first running a VCPU) to check that all VCPUs are
configured to use the same PPI for the timer (as mandated by the
architecture) and that the virtual and physical timers are not
configured to use the same IRQ number.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
We currently initialize the arch timer IRQ numbers from the reset code,
presumably because we once intended to model multiple CPU or SoC types
from within the kernel and have hard-coded reset values in the reset
code.
As we are moving towards userspace being in charge of more fine-grained
CPU emulation and stitching together the pieces needed to emulate a
particular type of CPU, we should no longer have a tight coupling
between resetting a VCPU and setting IRQ numbers.
Therefore, move the logic to define and use the default IRQ numbers to
the timer code and set the IRQ number immediately when creating the
VCPU.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
As we are about to support VCPU attributes to set the timer IRQ numbers
in guest.c, move the static inlines for the VCPU attributes handlers
from the header file to guest.c.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
We currently have the HSCTLR.A bit set, trapping unaligned accesses
at HYP, but we're not really prepared to deal with it.
Since the rest of the kernel is pretty happy about that, let's follow
its example and set HSCTLR.A to zero. Modern CPUs don't really care.
Cc: stable@vger.kernel.org
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
arm/arm64 already has one VCPU request used when setting pause,
but it doesn't properly check requests in VCPU RUN. Check it
and also make sure we set vcpu->mode at the appropriate time
(before the check) and with the appropriate barriers. See
Documentation/virtual/kvm/vcpu-requests.rst. Also make sure we
don't leave any vcpu requests we don't intend to handle later
set in the request bitmap. If we don't clear them, then
kvm_request_pending() may return true when it shouldn't.
Using VCPU requests properly fixes a small race where pause
could get set just as a VCPU was entering guest mode.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
When KVM panics, it hurridly restores the host context and parachutes
into the host's panic() code. This looks like it was copied from arm64,
the 32bit KVM panic code needs to restore the host's banked registers
too.
At some point panic() touches the physical timer/counter, this will
trap back to HYP. If we're lucky, we panic again.
Add a __timer_save_state() call to KVMs hyp_panic() path, this saves the
guest registers and disables the traps for the host.
Fixes: c36b6db5f3e4 ("ARM: KVM: Add panic handling code")
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
pm_fake doesn't quite describe what the handler does (ignoring writes
and returning 0 for reads).
As we're about to use it (a lot) in a different context, rename it
with a (admitedly cryptic) name that make sense for all users.
Signed-off-by: Zhichao Huang <zhichao.huang@linaro.org>
Reviewed-by: Alex Bennee <alex.bennee@linaro.org>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
Hardware debugging in guests is not intercepted currently, it means
that a malicious guest can bring down the entire machine by writing
to the debug registers.
This patch enable trapping of all debug registers, preventing the
guests to access the debug registers. This includes access to the
debug mode(DBGDSCR) in the guest world all the time which could
otherwise mess with the host state. Reads return 0 and writes are
ignored (RAZ_WI).
The result is the guest cannot detect any working hardware based debug
support. As debug exceptions are still routed to the guest normal
debug using software based breakpoints still works.
To support debugging using hardware registers we need to implement a
debug register aware world switch as well as special trapping for
registers that may affect the host state.
Cc: stable@vger.kernel.org
Signed-off-by: Zhichao Huang <zhichao.huang@linaro.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
We like living dangerously. Nothing explicitely forbids stack-protector
to be used in the HYP code, while distributions routinely compile their
kernel with it. We're just lucky that no code actually triggers the
instrumentation.
Let's not try our luck for much longer, and disable stack-protector
for code living at HYP.
Cc: stable@vger.kernel.org
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
Moving most of the shared code to virt/kvm/arm had for consequence
that KVM/ARM doesn't build anymore, because the code that used to
define the tracepoints is now somewhere else.
Fix this by defining CREATE_TRACE_POINTS in coproc.c, and clean-up
trace.h as well.
Fixes: 35d2d5d490e2 ("KVM: arm/arm64: Move shared files to virt/kvm/arm")
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
For some time now we have been having a lot of shared functionality
between the arm and arm64 KVM support in arch/arm, which not only
required a horrible inter-arch reference from the Makefile in
arch/arm64/kvm, but also created confusion for newcomers to the code
base, as was recently seen on the mailing list.
Further, it causes confusion for things like cscope, which needs special
attention to index specific shared files for arm64 from the arm tree.
Move the shared files into virt/kvm/arm and move the trace points along
with it. When moving the tracepoints we have to modify the way the vgic
creates definitions of the trace points, so we take the chance to
include the VGIC tracepoints in its very own special vgic trace.h file.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
When entering the hyp stub implemented in the idmap, we try to
be mindful of the fact that we could be running a Thumb-2 kernel
by adding 1 to the address we compute. Unfortunately, the assembler
also knows about this trick, and has already generated an address
that has bit 0 set in the litteral pool.
Our superfluous correction ends up confusing the CPU entierely,
as we now branch to the stub in ARM mode instead of Thumb, and on
a possibly unaligned address for good measure. From that point,
nothing really good happens.
The obvious fix in to remove this stupid target PC correction.
Fixes: 6bebcecb6c5b ("ARM: KVM: Allow the main HYP code to use the init hyp stub implementation")
Reported-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
Fix potential races in kvm_psci_vcpu_on() by taking the kvm->lock
mutex. In general, it's a bad idea to allow more than one PSCI_CPU_ON
to process the same target VCPU at the same time. One such problem
that may arise is that one PSCI_CPU_ON could be resetting the target
vcpu, which fills the entire sys_regs array with a temporary value
including the MPIDR register, while another looks up the VCPU based
on the MPIDR value, resulting in no target VCPU found. Resolves both
races found with the kvm-unit-tests/arm/psci unit test.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reported-by: Levente Kurusa <lkurusa@redhat.com>
Suggested-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Andrew Jones <drjones@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
Now that we support both timers and PMU reporting interrupts
to userspace, we can advertise this support.
Reviewed-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
When not using an in-kernel VGIC, but instead emulating an interrupt
controller in userspace, we should report the PMU overflow status to
that userspace interrupt controller using the KVM_CAP_ARM_USER_IRQ
feature.
Reviewed-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
If you're running with a userspace gic or other interrupt controller
(that is no vgic in the kernel), then you have so far not been able to
use the architected timers, because the output of the architected
timers, which are driven inside the kernel, was a kernel-only construct
between the arch timer code and the vgic.
This patch implements the new KVM_CAP_ARM_USER_IRQ feature, where we use a
side channel on the kvm_run structure, run->s.regs.device_irq_level, to
always notify userspace of the timer output levels when using a userspace
irqchip.
This works by ensuring that before we enter the guest, if the timer
output level has changed compared to what we last told userspace, we
don't enter the guest, but instead return to userspace to notify it of
the new level. If we are exiting, because of an MMIO for example, and
the level changed at the same time, the value is also updated and
userspace can sample the line as it needs. This is nicely achieved
simply always updating the timer_irq_level field after the main run
loop.
Note that the kvm_timer_update_irq trace event is changed to show the
host IRQ number for the timer instead of the guest IRQ number, because
the kernel no longer know which IRQ userspace wires up the timer signal
to.
Also note that this patch implements all required functionality but does
not yet advertise the capability.
Reviewed-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
We now return HVC_STUB_ERR when a stub hypercall fails, but we
leave whatever was in r0 on success. Zeroing it on return seems
like a good idea.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
Nobody is using __hyp_get_vectors anymore, so let's remove both
implementations (hyp-stub and KVM).
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
Instead of trying to compare the value given by __hyp_get_vectors(),
which doesn't offer any real guarantee to be the stub's address, use
HVC_RESET_VECTORS to make sure we're in a sane state to reinstall
KVM across PM events.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
With __cpu_reset_hyp_mode having become fairly dumb, there is no
need for kvm_get_idmap_start anymore.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
__cpu_reset_hyp_mode doesn't need to be passed any argument now,
as the hyp-stub implementations are self-contained, and is now
reduced to just calling __hyp_reset_vectors(). Let's drop the
wrapper and use the stub hypercall directly.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
Should kvm_reboot() be invoked while guest is running, an IPI
wil be issued, forcing the guest to exit and HYP being reset to
the stubs. We will then try to reenter the guest, only to get
an error (HVC_STUB_ERR).
This patch allows this case to be gracefully handled by exiting
the run loop.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
Another missing stub hypercall is HVC_SOFT_RESTART. It turns out
that it is pretty easy to implement in terms of HVC_RESET_VECTORS
(since it needs to turn the MMU off).
Tested-by: Keerthy <j-keerthy@ti.com>
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
We are now able to use the hyp stub to reset HYP mode. Time to
kiss __kvm_hyp_reset goodbye, and use __hyp_reset_vectors.
Tested-by: Keerthy <j-keerthy@ti.com>
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
We now have a full hyp-stub implementation in the KVM init code,
but the main KVM code only supports HVC_GET_VECTORS, which is not
enough.
Instead of reinventing the wheel, let's reuse the init implementation
by branching to the idmap page when called with a hyp-stub hypercall.
Tested-by: Keerthy <j-keerthy@ti.com>
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
Now that we have an infrastructure to handle hypercalls in the KVM
init code, let's implement HVC_GET_VECTORS there.
Tested-by: Keerthy <j-keerthy@ti.com>
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
In order to restore HYP mode to its original condition, KVM currently
implements __kvm_hyp_reset(). As we're moving towards a hyp-stub
defined API, it becomes necessary to implement HVC_RESET_VECTORS.
This patch adds the HVC_RESET_VECTORS hypercall to the KVM init
code, which so far lacked any form of hypercall support.
Tested-by: Keerthy <j-keerthy@ti.com>
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
The conversion of the HYP stub ABI to something similar to arm64
left the KVM code broken, as it doesn't know about the new
stub numbering. Let's move the various #defines to virt.h, and
let KVM use HVC_GET_VECTORS.
Tested-by: Keerthy <j-keerthy@ti.com>
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
Instead of considering that a CP15 accessor has failed when
returning false, let's consider that it is *always* successful
(after all, we won't stand for an incomplete emulation).
The return value now simply indicates whether we should skip
the instruction (because it has now been emulated), or if we
should leave the PC alone if the emulation has injected an
exception.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Reads from write-only system registers are generally confined to
EL1 and not propagated to EL2 (that's what the architecture
mantates). In order to be sure that we have a sane behaviour
even in the unlikely event that we have a broken system, we still
handle it in KVM. Same goes for write to RO registers.
In that case, let's inject an undef into the guest.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
We don't have to save/restore the VMCR on every entry to/from the guest,
since on GICv2 we can access the control interface from EL1 and on VHE
systems with GICv3 we can access the control interface from KVM running
in EL2.
GICv3 systems without VHE becomes the rare case, which has to
save/restore the register on each round trip.
Note that userspace accesses may see out-of-date values if the VCPU is
running while accessing the VGIC state via the KVM device API, but this
is already the case and it is up to userspace to quiesce the CPUs before
reading the CPU registers from the GIC for an up-to-date view.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
In order to perform an operation on a gpa range, we currently iterate
over each page in a user memory slot for the given range. This is
inefficient while dealing with a big range (e.g, a VMA), especially
while unmaping a range. At present, with stage2 unmap on a range with
a hugepage backed region, we clear the PMD when we unmap the first
page in the loop. The remaining iterations simply traverse the page table
down to the PMD level only to see that nothing is in there.
This patch reworks the code to invoke the callback handlers on the
biggest range possible within the memory slot to to reduce the number of
times the handler is called.
Cc: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
Return KVM_USER_MEM_SLOTS for userspace capability query on
NR_MEMSLOTS.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Linu Cherian <linu.cherian@cavium.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Currently we BUG() if we see a HSR.EC value we don't recognise. As
configurable disables/enables are added to the architecture (controlled
by RES1/RES0 bits respectively), with associated synchronous exceptions,
it may be possible for a guest to trigger exceptions with classes that
we don't recognise.
While we can't service these exceptions in a manner useful to the guest,
we can avoid bringing down the host. Per ARM DDI 0406C.c, all currently
unallocated HSR EC encodings are reserved, and per ARM DDI
0487A.k_iss10775, page G6-4395, EC values within the range 0x00 - 0x2c
are reserved for future use with synchronous exceptions, and EC values
within the range 0x2d - 0x3f may be used for either synchronous or
asynchronous exceptions.
The patch makes KVM handle any unknown EC by injecting an UNDEFINED
exception into the guest, with a corresponding (ratelimited) warning in
the host dmesg. We could later improve on this with with a new (opt-in)
exit to the host userspace.
Cc: Dave Martin <dave.martin@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
The purpose of the KVM_SET_SIGNAL_MASK API is to let userspace "kick"
a VCPU out of KVM_RUN through a POSIX signal. A signal is attached
to a dummy signal handler; by blocking the signal outside KVM_RUN and
unblocking it inside, this possible race is closed:
VCPU thread service thread
--------------------------------------------------------------
check flag
set flag
raise signal
(signal handler does nothing)
KVM_RUN
However, one issue with KVM_SET_SIGNAL_MASK is that it has to take
tsk->sighand->siglock on every KVM_RUN. This lock is often on a
remote NUMA node, because it is on the node of a thread's creator.
Taking this lock can be very expensive if there are many userspace
exits (as is the case for SMP Windows VMs without Hyper-V reference
time counter).
As an alternative, we can put the flag directly in kvm_run so that
KVM can see it:
VCPU thread service thread
--------------------------------------------------------------
raise signal
signal handler
set run->immediate_exit
KVM_RUN
check run->immediate_exit
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When scheduling a background timer, consider both of the virtual and
physical timer and pick the earliest expiration time.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Initialize the emulated EL1 physical timer with the default irq number.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Now that we have a separate structure for timer context, make functions
generic so that they can work with any timer context, not just the
virtual timer context. This does not change the virtual timer
functionality.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Make cntvoff per each timer context. This is helpful to abstract kvm
timer functions to work with timer context without considering timer
types (e.g. physical timer or virtual timer).
This also would pave the way for ever doing adjustments of the cntvoff
on a per-CPU basis if that should ever make sense.
Signed-off-by: Jintack Lim <jintack@cs.columbia.edu>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
KVM_MEMSLOT_INCOHERENT is not used anymore, as we've killed its
only use in the arm/arm64 MMU code. Let's remove the last artifacts.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|