Age | Commit message (Collapse) | Author |
|
support
When ARMv8 cores are used in AArch32 mode, arch_hw_breakpoint_init()
in arch/arm/kernel/hw_breakpoint.c will be used.
From ARMv8 specification, v8 debug architecture versions defined:
* 0110 ARMv8, v8 Debug architecture.
* 0111 ARMv8.1, v8 Debug architecture, with Virtualization Host
Extensions.
* 1000 ARMv8.2, v8.2 Debug architecture.
* 1001 ARMv8.4, v8.4 Debug architecture.
So missing ARMv8.1/ARMv8.2/ARMv8.4 cases will cause
enable_monitor_mode() returns -ENODEV,and eventually
arch_hw_breakpoint_init() will fail.
Signed-off-by: Candle Sun <candle.sun@unisoc.com>
Signed-off-by: Nianfu Bai <nianfu.bai@unisoc.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
|
|
All architectures have implemented it, we can now remove the poor weak
version.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Joel Fernandes <joel.opensrc@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/1529981939-8231-11-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Migrate to the new API in order to remove arch_validate_hwbkpt_settings()
that clumsily mixes up architecture validation and commit.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Joel Fernandes <joel.opensrc@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/1529981939-8231-6-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
arch_check_bp_in_kernelspace()
We can't pass the breakpoint directly on arch_check_bp_in_kernelspace()
anymore because its architecture internal datas (struct arch_hw_breakpoint)
are not yet filled by the time we call the function, and most
implementation need this backend to be up to date. So arrange the
function to take the probing struct instead.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Joel Fernandes <joel.opensrc@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/1529981939-8231-3-git-send-email-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Even though perf_ops_bp was removed/renamed back in commit
b0a873ebbf87bf38 ("perf: Register PMU implementations"), as part of
v2.6.37, its definition still lives on in some arch headers.
This patch removes the vestigal definition from arm.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
Add the trivial support necessary to get hardware breakpoints
working for GDB on ARMv8 simulators running in AArch32 mode.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christopher Covington <cov@codeaurora.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
v7 debug introduced OS Save and Restore mechanism. On a v7 debug SinglePower
system, i.e a system without a separate core and debug power domain, which does
not support external debug over powerdown, it is implementation defined whether
OS Save and Restore is implemented.
v7.1 debug requires OS Save and Restore mechanism. v6 debug and v6.1 debug do
not implement it.
A new global variable bool has_ossr is introduced and is determined in
arch_hw_breakpoint_init() like debug_arch or the number of BRPs/WRPs.
The logic how to check if OS Save and Restore is supported has changed with
this patch. In reset_ctrl_regs() a mask consisting of OSLM[1] (OSLSR.3) and
OSLM[0] (OSLSR.0) was used to check if the system supports OS Save and
Restore. In the new function core_has_os_save_restore() only OSLM[0] is used.
It is not necessary to check OSLM[1] too since it is v7.1 debug specific and
v7.1 debug requires OS Save and Restore and thus OS Lock.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
The coprocessor register CRn for accesses to the debug register can be a
different one than C0. Take this into account for the ARM_DBG_READ and
the ARM_DBG_WRITE macro.
The inline assembler calls which used a coprocessor register CRn other
than C0 are replaced by the ARM_DBG_READ or ARM_DBG_WRITE macro.
Tested-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
ARM debug architecture 7.1 mandates that the DFAR is updated on a
watchpoint debug exception to contain the faulting virtual address
of the memory access. This allows us to determine which watchpoints
have fired and therefore report useful information to userspace.
This patch adds support for using the DFAR in the watchpoint handler,
which allows us to support multiple watchpoints on CPUs implementing
the new debug architecture.
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
This patch adds initial support for Cortex-A15 (debug architecture v7.1)
to the hw_breakpoint ARM backend.
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
The single-stepping code is currently different depending on whether
we are stepping over a breakpoint or a watchpoint. There is no good
reason for this, so let's sort it out.
This patch adds functions for enabling/disabling single-step for
a particular hw_breakpoint and integrates this with the exception
handling code.
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
The watchpoint single-stepping code calls register_user_hw_breakpoint to
register a mismatch breakpoint for stepping over the watchpoint. This is
performed with preemption disabled, which is unsafe as we may end up scheduling
whilst in_atomic(). Furthermore, using the perf API is rather overkill since
we are already in the hw-breakpoint backend and only require access to reserved
breakpoints anyway.
This patch reworks the watchpoint stepping code so that we don't require
another perf_event for the mismatch breakpoint. Instead, we hold a separate
arch_hw_breakpoint_ctrl struct inside the watchpoint which is used exclusively
for stepping. We can check whether or not stepping is enabled when installing
or uninstalling the watchpoint and operate on the breakpoint accordingly.
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
interaction
For debuggers to take advantage of the hw-breakpoint framework in the kernel,
it is necessary to expose the API calls via a ptrace interface.
This patch exposes the hardware breakpoints framework as a collection of
virtual registers, accesible using PTRACE_SETHBPREGS and PTRACE_GETHBPREGS
requests. The breakpoints are stored in the debug_info struct of the running
thread.
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: S. Karthikeyan <informkarthik@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
The hw-breakpoint framework in the kernel requires architecture-specific
support in order to install, remove, validate and manage hardware
breakpoints.
This patch adds initial support for this framework to the ARM architecture,
but restricts the number of watchpoints to a single resource to get around
the fact that the Data Fault Address Register is unknown when a watchpoint
debug exception is taken.
On cores with v7 debug, the Kernel can handle breakpoint and watchpoint
exceptions occuring from userspace. Older cores require clients to handle
the exception themselves by registering an appropriate overflow handler
or, in the case of ptrace, handling the raised SIGTRAP.
The memory-mapped extended debug interface is unsupported due to its
unreliability in real implementations.
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: S. Karthikeyan <informkarthik@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|