diff options
Diffstat (limited to 'arch/x86/platform')
-rw-r--r-- | arch/x86/platform/efi/Makefile | 2 | ||||
-rw-r--r-- | arch/x86/platform/efi/efi.c | 483 | ||||
-rw-r--r-- | arch/x86/platform/efi/quirks.c | 290 | ||||
-rw-r--r-- | arch/x86/platform/ts5500/ts5500.c | 94 | ||||
-rw-r--r-- | arch/x86/platform/uv/tlb_uv.c | 71 |
5 files changed, 429 insertions, 511 deletions
diff --git a/arch/x86/platform/efi/Makefile b/arch/x86/platform/efi/Makefile index d51045afcaaf..2846aaab5103 100644 --- a/arch/x86/platform/efi/Makefile +++ b/arch/x86/platform/efi/Makefile @@ -1,4 +1,4 @@ -obj-$(CONFIG_EFI) += efi.o efi_$(BITS).o efi_stub_$(BITS).o +obj-$(CONFIG_EFI) += quirks.o efi.o efi_$(BITS).o efi_stub_$(BITS).o obj-$(CONFIG_ACPI_BGRT) += efi-bgrt.o obj-$(CONFIG_EARLY_PRINTK_EFI) += early_printk.o obj-$(CONFIG_EFI_MIXED) += efi_thunk_$(BITS).o diff --git a/arch/x86/platform/efi/efi.c b/arch/x86/platform/efi/efi.c index 87fc96bcc13c..850da94fef30 100644 --- a/arch/x86/platform/efi/efi.c +++ b/arch/x86/platform/efi/efi.c @@ -56,13 +56,6 @@ #define EFI_DEBUG -#define EFI_MIN_RESERVE 5120 - -#define EFI_DUMMY_GUID \ - EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9) - -static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 }; - struct efi_memory_map memmap; static struct efi efi_phys __initdata; @@ -95,139 +88,6 @@ static int __init setup_add_efi_memmap(char *arg) } early_param("add_efi_memmap", setup_add_efi_memmap); -static bool efi_no_storage_paranoia; - -static int __init setup_storage_paranoia(char *arg) -{ - efi_no_storage_paranoia = true; - return 0; -} -early_param("efi_no_storage_paranoia", setup_storage_paranoia); - -static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc) -{ - unsigned long flags; - efi_status_t status; - - spin_lock_irqsave(&rtc_lock, flags); - status = efi_call_virt(get_time, tm, tc); - spin_unlock_irqrestore(&rtc_lock, flags); - return status; -} - -static efi_status_t virt_efi_set_time(efi_time_t *tm) -{ - unsigned long flags; - efi_status_t status; - - spin_lock_irqsave(&rtc_lock, flags); - status = efi_call_virt(set_time, tm); - spin_unlock_irqrestore(&rtc_lock, flags); - return status; -} - -static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled, - efi_bool_t *pending, - efi_time_t *tm) -{ - unsigned long flags; - efi_status_t status; - - spin_lock_irqsave(&rtc_lock, flags); - status = efi_call_virt(get_wakeup_time, enabled, pending, tm); - spin_unlock_irqrestore(&rtc_lock, flags); - return status; -} - -static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm) -{ - unsigned long flags; - efi_status_t status; - - spin_lock_irqsave(&rtc_lock, flags); - status = efi_call_virt(set_wakeup_time, enabled, tm); - spin_unlock_irqrestore(&rtc_lock, flags); - return status; -} - -static efi_status_t virt_efi_get_variable(efi_char16_t *name, - efi_guid_t *vendor, - u32 *attr, - unsigned long *data_size, - void *data) -{ - return efi_call_virt(get_variable, - name, vendor, attr, - data_size, data); -} - -static efi_status_t virt_efi_get_next_variable(unsigned long *name_size, - efi_char16_t *name, - efi_guid_t *vendor) -{ - return efi_call_virt(get_next_variable, - name_size, name, vendor); -} - -static efi_status_t virt_efi_set_variable(efi_char16_t *name, - efi_guid_t *vendor, - u32 attr, - unsigned long data_size, - void *data) -{ - return efi_call_virt(set_variable, - name, vendor, attr, - data_size, data); -} - -static efi_status_t virt_efi_query_variable_info(u32 attr, - u64 *storage_space, - u64 *remaining_space, - u64 *max_variable_size) -{ - if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) - return EFI_UNSUPPORTED; - - return efi_call_virt(query_variable_info, attr, storage_space, - remaining_space, max_variable_size); -} - -static efi_status_t virt_efi_get_next_high_mono_count(u32 *count) -{ - return efi_call_virt(get_next_high_mono_count, count); -} - -static void virt_efi_reset_system(int reset_type, - efi_status_t status, - unsigned long data_size, - efi_char16_t *data) -{ - __efi_call_virt(reset_system, reset_type, status, - data_size, data); -} - -static efi_status_t virt_efi_update_capsule(efi_capsule_header_t **capsules, - unsigned long count, - unsigned long sg_list) -{ - if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) - return EFI_UNSUPPORTED; - - return efi_call_virt(update_capsule, capsules, count, sg_list); -} - -static efi_status_t virt_efi_query_capsule_caps(efi_capsule_header_t **capsules, - unsigned long count, - u64 *max_size, - int *reset_type) -{ - if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) - return EFI_UNSUPPORTED; - - return efi_call_virt(query_capsule_caps, capsules, count, max_size, - reset_type); -} - static efi_status_t __init phys_efi_set_virtual_address_map( unsigned long memory_map_size, unsigned long descriptor_size, @@ -244,42 +104,6 @@ static efi_status_t __init phys_efi_set_virtual_address_map( return status; } -int efi_set_rtc_mmss(const struct timespec *now) -{ - unsigned long nowtime = now->tv_sec; - efi_status_t status; - efi_time_t eft; - efi_time_cap_t cap; - struct rtc_time tm; - - status = efi.get_time(&eft, &cap); - if (status != EFI_SUCCESS) { - pr_err("Oops: efitime: can't read time!\n"); - return -1; - } - - rtc_time_to_tm(nowtime, &tm); - if (!rtc_valid_tm(&tm)) { - eft.year = tm.tm_year + 1900; - eft.month = tm.tm_mon + 1; - eft.day = tm.tm_mday; - eft.minute = tm.tm_min; - eft.second = tm.tm_sec; - eft.nanosecond = 0; - } else { - pr_err("%s: Invalid EFI RTC value: write of %lx to EFI RTC failed\n", - __func__, nowtime); - return -1; - } - - status = efi.set_time(&eft); - if (status != EFI_SUCCESS) { - pr_err("Oops: efitime: can't write time!\n"); - return -1; - } - return 0; -} - void efi_get_time(struct timespec *now) { efi_status_t status; @@ -350,6 +174,9 @@ int __init efi_memblock_x86_reserve_range(void) struct efi_info *e = &boot_params.efi_info; unsigned long pmap; + if (efi_enabled(EFI_PARAVIRT)) + return 0; + #ifdef CONFIG_X86_32 /* Can't handle data above 4GB at this time */ if (e->efi_memmap_hi) { @@ -392,69 +219,15 @@ static void __init print_efi_memmap(void) #endif /* EFI_DEBUG */ } -void __init efi_reserve_boot_services(void) -{ - void *p; - - for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { - efi_memory_desc_t *md = p; - u64 start = md->phys_addr; - u64 size = md->num_pages << EFI_PAGE_SHIFT; - - if (md->type != EFI_BOOT_SERVICES_CODE && - md->type != EFI_BOOT_SERVICES_DATA) - continue; - /* Only reserve where possible: - * - Not within any already allocated areas - * - Not over any memory area (really needed, if above?) - * - Not within any part of the kernel - * - Not the bios reserved area - */ - if ((start + size > __pa_symbol(_text) - && start <= __pa_symbol(_end)) || - !e820_all_mapped(start, start+size, E820_RAM) || - memblock_is_region_reserved(start, size)) { - /* Could not reserve, skip it */ - md->num_pages = 0; - memblock_dbg("Could not reserve boot range [0x%010llx-0x%010llx]\n", - start, start+size-1); - } else - memblock_reserve(start, size); - } -} - void __init efi_unmap_memmap(void) { clear_bit(EFI_MEMMAP, &efi.flags); if (memmap.map) { - early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size); + early_memunmap(memmap.map, memmap.nr_map * memmap.desc_size); memmap.map = NULL; } } -void __init efi_free_boot_services(void) -{ - void *p; - - for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { - efi_memory_desc_t *md = p; - unsigned long long start = md->phys_addr; - unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; - - if (md->type != EFI_BOOT_SERVICES_CODE && - md->type != EFI_BOOT_SERVICES_DATA) - continue; - - /* Could not reserve boot area */ - if (!size) - continue; - - free_bootmem_late(start, size); - } - - efi_unmap_memmap(); -} - static int __init efi_systab_init(void *phys) { if (efi_enabled(EFI_64BIT)) { @@ -467,12 +240,12 @@ static int __init efi_systab_init(void *phys) if (!data) return -ENOMEM; } - systab64 = early_ioremap((unsigned long)phys, + systab64 = early_memremap((unsigned long)phys, sizeof(*systab64)); if (systab64 == NULL) { pr_err("Couldn't map the system table!\n"); if (data) - early_iounmap(data, sizeof(*data)); + early_memunmap(data, sizeof(*data)); return -ENOMEM; } @@ -504,9 +277,9 @@ static int __init efi_systab_init(void *phys) systab64->tables; tmp |= data ? data->tables : systab64->tables; - early_iounmap(systab64, sizeof(*systab64)); + early_memunmap(systab64, sizeof(*systab64)); if (data) - early_iounmap(data, sizeof(*data)); + early_memunmap(data, sizeof(*data)); #ifdef CONFIG_X86_32 if (tmp >> 32) { pr_err("EFI data located above 4GB, disabling EFI.\n"); @@ -516,7 +289,7 @@ static int __init efi_systab_init(void *phys) } else { efi_system_table_32_t *systab32; - systab32 = early_ioremap((unsigned long)phys, + systab32 = early_memremap((unsigned long)phys, sizeof(*systab32)); if (systab32 == NULL) { pr_err("Couldn't map the system table!\n"); @@ -537,7 +310,7 @@ static int __init efi_systab_init(void *phys) efi_systab.nr_tables = systab32->nr_tables; efi_systab.tables = systab32->tables; - early_iounmap(systab32, sizeof(*systab32)); + early_memunmap(systab32, sizeof(*systab32)); } efi.systab = &efi_systab; @@ -563,7 +336,7 @@ static int __init efi_runtime_init32(void) { efi_runtime_services_32_t *runtime; - runtime = early_ioremap((unsigned long)efi.systab->runtime, + runtime = early_memremap((unsigned long)efi.systab->runtime, sizeof(efi_runtime_services_32_t)); if (!runtime) { pr_err("Could not map the runtime service table!\n"); @@ -578,7 +351,7 @@ static int __init efi_runtime_init32(void) efi_phys.set_virtual_address_map = (efi_set_virtual_address_map_t *) (unsigned long)runtime->set_virtual_address_map; - early_iounmap(runtime, sizeof(efi_runtime_services_32_t)); + early_memunmap(runtime, sizeof(efi_runtime_services_32_t)); return 0; } @@ -587,7 +360,7 @@ static int __init efi_runtime_init64(void) { efi_runtime_services_64_t *runtime; - runtime = early_ioremap((unsigned long)efi.systab->runtime, + runtime = early_memremap((unsigned long)efi.systab->runtime, sizeof(efi_runtime_services_64_t)); if (!runtime) { pr_err("Could not map the runtime service table!\n"); @@ -602,7 +375,7 @@ static int __init efi_runtime_init64(void) efi_phys.set_virtual_address_map = (efi_set_virtual_address_map_t *) (unsigned long)runtime->set_virtual_address_map; - early_iounmap(runtime, sizeof(efi_runtime_services_64_t)); + early_memunmap(runtime, sizeof(efi_runtime_services_64_t)); return 0; } @@ -616,14 +389,24 @@ static int __init efi_runtime_init(void) * the runtime services table so that we can grab the physical * address of several of the EFI runtime functions, needed to * set the firmware into virtual mode. + * + * When EFI_PARAVIRT is in force then we could not map runtime + * service memory region because we do not have direct access to it. + * However, runtime services are available through proxy functions + * (e.g. in case of Xen dom0 EFI implementation they call special + * hypercall which executes relevant EFI functions) and that is why + * they are always enabled. */ - if (efi_enabled(EFI_64BIT)) - rv = efi_runtime_init64(); - else - rv = efi_runtime_init32(); - if (rv) - return rv; + if (!efi_enabled(EFI_PARAVIRT)) { + if (efi_enabled(EFI_64BIT)) + rv = efi_runtime_init64(); + else + rv = efi_runtime_init32(); + + if (rv) + return rv; + } set_bit(EFI_RUNTIME_SERVICES, &efi.flags); @@ -632,8 +415,11 @@ static int __init efi_runtime_init(void) static int __init efi_memmap_init(void) { + if (efi_enabled(EFI_PARAVIRT)) + return 0; + /* Map the EFI memory map */ - memmap.map = early_ioremap((unsigned long)memmap.phys_map, + memmap.map = early_memremap((unsigned long)memmap.phys_map, memmap.nr_map * memmap.desc_size); if (memmap.map == NULL) { pr_err("Could not map the memory map!\n"); @@ -649,62 +435,6 @@ static int __init efi_memmap_init(void) return 0; } -/* - * A number of config table entries get remapped to virtual addresses - * after entering EFI virtual mode. However, the kexec kernel requires - * their physical addresses therefore we pass them via setup_data and - * correct those entries to their respective physical addresses here. - * - * Currently only handles smbios which is necessary for some firmware - * implementation. - */ -static int __init efi_reuse_config(u64 tables, int nr_tables) -{ - int i, sz, ret = 0; - void *p, *tablep; - struct efi_setup_data *data; - - if (!efi_setup) - return 0; - - if (!efi_enabled(EFI_64BIT)) - return 0; - - data = early_memremap(efi_setup, sizeof(*data)); - if (!data) { - ret = -ENOMEM; - goto out; - } - - if (!data->smbios) - goto out_memremap; - - sz = sizeof(efi_config_table_64_t); - - p = tablep = early_memremap(tables, nr_tables * sz); - if (!p) { - pr_err("Could not map Configuration table!\n"); - ret = -ENOMEM; - goto out_memremap; - } - - for (i = 0; i < efi.systab->nr_tables; i++) { - efi_guid_t guid; - - guid = ((efi_config_table_64_t *)p)->guid; - - if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID)) - ((efi_config_table_64_t *)p)->table = data->smbios; - p += sz; - } - early_iounmap(tablep, nr_tables * sz); - -out_memremap: - early_iounmap(data, sizeof(*data)); -out: - return ret; -} - void __init efi_init(void) { efi_char16_t *c16; @@ -728,8 +458,6 @@ void __init efi_init(void) if (efi_systab_init(efi_phys.systab)) return; - set_bit(EFI_SYSTEM_TABLES, &efi.flags); - efi.config_table = (unsigned long)efi.systab->tables; efi.fw_vendor = (unsigned long)efi.systab->fw_vendor; efi.runtime = (unsigned long)efi.systab->runtime; @@ -737,14 +465,14 @@ void __init efi_init(void) /* * Show what we know for posterity */ - c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2); + c16 = tmp = early_memremap(efi.systab->fw_vendor, 2); if (c16) { for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i) vendor[i] = *c16++; vendor[i] = '\0'; } else pr_err("Could not map the firmware vendor!\n"); - early_iounmap(tmp, 2); + early_memunmap(tmp, 2); pr_info("EFI v%u.%.02u by %s\n", efi.systab->hdr.revision >> 16, @@ -770,8 +498,6 @@ void __init efi_init(void) if (efi_memmap_init()) return; - set_bit(EFI_MEMMAP, &efi.flags); - print_efi_memmap(); } @@ -847,22 +573,6 @@ void __init old_map_region(efi_memory_desc_t *md) (unsigned long long)md->phys_addr); } -static void native_runtime_setup(void) -{ - efi.get_time = virt_efi_get_time; - efi.set_time = virt_efi_set_time; - efi.get_wakeup_time = virt_efi_get_wakeup_time; - efi.set_wakeup_time = virt_efi_set_wakeup_time; - efi.get_variable = virt_efi_get_variable; - efi.get_next_variable = virt_efi_get_next_variable; - efi.set_variable = virt_efi_set_variable; - efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count; - efi.reset_system = virt_efi_reset_system; - efi.query_variable_info = virt_efi_query_variable_info; - efi.update_capsule = virt_efi_update_capsule; - efi.query_capsule_caps = virt_efi_query_capsule_caps; -} - /* Merge contiguous regions of the same type and attribute */ static void __init efi_merge_regions(void) { @@ -1049,7 +759,7 @@ static void __init kexec_enter_virtual_mode(void) */ efi.runtime_version = efi_systab.hdr.revision; - native_runtime_setup(); + efi_native_runtime_setup(); efi.set_virtual_address_map = NULL; @@ -1057,11 +767,7 @@ static void __init kexec_enter_virtual_mode(void) runtime_code_page_mkexec(); /* clean DUMMY object */ - efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID, - EFI_VARIABLE_NON_VOLATILE | - EFI_VARIABLE_BOOTSERVICE_ACCESS | - EFI_VARIABLE_RUNTIME_ACCESS, - 0, NULL); + efi_delete_dummy_variable(); #endif } @@ -1142,7 +848,7 @@ static void __init __efi_enter_virtual_mode(void) efi.runtime_version = efi_systab.hdr.revision; if (efi_is_native()) - native_runtime_setup(); + efi_native_runtime_setup(); else efi_thunk_runtime_setup(); @@ -1179,15 +885,14 @@ static void __init __efi_enter_virtual_mode(void) free_pages((unsigned long)new_memmap, pg_shift); /* clean DUMMY object */ - efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID, - EFI_VARIABLE_NON_VOLATILE | - EFI_VARIABLE_BOOTSERVICE_ACCESS | - EFI_VARIABLE_RUNTIME_ACCESS, - 0, NULL); + efi_delete_dummy_variable(); } void __init efi_enter_virtual_mode(void) { + if (efi_enabled(EFI_PARAVIRT)) + return; + if (efi_setup) kexec_enter_virtual_mode(); else @@ -1220,6 +925,9 @@ u64 efi_mem_attributes(unsigned long phys_addr) efi_memory_desc_t *md; void *p; + if (!efi_enabled(EFI_MEMMAP)) + return 0; + for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { md = p; if ((md->phys_addr <= phys_addr) && @@ -1230,86 +938,6 @@ u64 efi_mem_attributes(unsigned long phys_addr) return 0; } -/* - * Some firmware implementations refuse to boot if there's insufficient space - * in the variable store. Ensure that we never use more than a safe limit. - * - * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable - * store. - */ -efi_status_t efi_query_variable_store(u32 attributes, unsigned long size) -{ - efi_status_t status; - u64 storage_size, remaining_size, max_size; - - if (!(attributes & EFI_VARIABLE_NON_VOLATILE)) - return 0; - - status = efi.query_variable_info(attributes, &storage_size, - &remaining_size, &max_size); - if (status != EFI_SUCCESS) - return status; - - /* - * We account for that by refusing the write if permitting it would - * reduce the available space to under 5KB. This figure was provided by - * Samsung, so should be safe. - */ - if ((remaining_size - size < EFI_MIN_RESERVE) && - !efi_no_storage_paranoia) { - - /* - * Triggering garbage collection may require that the firmware - * generate a real EFI_OUT_OF_RESOURCES error. We can force - * that by attempting to use more space than is available. - */ - unsigned long dummy_size = remaining_size + 1024; - void *dummy = kzalloc(dummy_size, GFP_ATOMIC); - - if (!dummy) - return EFI_OUT_OF_RESOURCES; - - status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID, - EFI_VARIABLE_NON_VOLATILE | - EFI_VARIABLE_BOOTSERVICE_ACCESS | - EFI_VARIABLE_RUNTIME_ACCESS, - dummy_size, dummy); - - if (status == EFI_SUCCESS) { - /* - * This should have failed, so if it didn't make sure - * that we delete it... - */ - efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID, - EFI_VARIABLE_NON_VOLATILE | - EFI_VARIABLE_BOOTSERVICE_ACCESS | - EFI_VARIABLE_RUNTIME_ACCESS, - 0, dummy); - } - - kfree(dummy); - - /* - * The runtime code may now have triggered a garbage collection - * run, so check the variable info again - */ - status = efi.query_variable_info(attributes, &storage_size, - &remaining_size, &max_size); - - if (status != EFI_SUCCESS) - return status; - - /* - * There still isn't enough room, so return an error - */ - if (remaining_size - size < EFI_MIN_RESERVE) - return EFI_OUT_OF_RESOURCES; - } - - return EFI_SUCCESS; -} -EXPORT_SYMBOL_GPL(efi_query_variable_store); - static int __init parse_efi_cmdline(char *str) { if (*str == '=') @@ -1321,22 +949,3 @@ static int __init parse_efi_cmdline(char *str) return 0; } early_param("efi", parse_efi_cmdline); - -void __init efi_apply_memmap_quirks(void) -{ - /* - * Once setup is done earlier, unmap the EFI memory map on mismatched - * firmware/kernel architectures since there is no support for runtime - * services. - */ - if (!efi_runtime_supported()) { - pr_info("efi: Setup done, disabling due to 32/64-bit mismatch\n"); - efi_unmap_memmap(); - } - - /* - * UV doesn't support the new EFI pagetable mapping yet. - */ - if (is_uv_system()) - set_bit(EFI_OLD_MEMMAP, &efi.flags); -} diff --git a/arch/x86/platform/efi/quirks.c b/arch/x86/platform/efi/quirks.c new file mode 100644 index 000000000000..1c7380da65ff --- /dev/null +++ b/arch/x86/platform/efi/quirks.c @@ -0,0 +1,290 @@ +#include <linux/init.h> +#include <linux/kernel.h> +#include <linux/string.h> +#include <linux/time.h> +#include <linux/types.h> +#include <linux/efi.h> +#include <linux/slab.h> +#include <linux/memblock.h> +#include <linux/bootmem.h> +#include <linux/acpi.h> +#include <asm/efi.h> +#include <asm/uv/uv.h> + +#define EFI_MIN_RESERVE 5120 + +#define EFI_DUMMY_GUID \ + EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9) + +static efi_char16_t efi_dummy_name[6] = { 'D', 'U', 'M', 'M', 'Y', 0 }; + +static bool efi_no_storage_paranoia; + +/* + * Some firmware implementations refuse to boot if there's insufficient + * space in the variable store. The implementation of garbage collection + * in some FW versions causes stale (deleted) variables to take up space + * longer than intended and space is only freed once the store becomes + * almost completely full. + * + * Enabling this option disables the space checks in + * efi_query_variable_store() and forces garbage collection. + * + * Only enable this option if deleting EFI variables does not free up + * space in your variable store, e.g. if despite deleting variables + * you're unable to create new ones. + */ +static int __init setup_storage_paranoia(char *arg) +{ + efi_no_storage_paranoia = true; + return 0; +} +early_param("efi_no_storage_paranoia", setup_storage_paranoia); + +/* + * Deleting the dummy variable which kicks off garbage collection +*/ +void efi_delete_dummy_variable(void) +{ + efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID, + EFI_VARIABLE_NON_VOLATILE | + EFI_VARIABLE_BOOTSERVICE_ACCESS | + EFI_VARIABLE_RUNTIME_ACCESS, + 0, NULL); +} + +/* + * Some firmware implementations refuse to boot if there's insufficient space + * in the variable store. Ensure that we never use more than a safe limit. + * + * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable + * store. + */ +efi_status_t efi_query_variable_store(u32 attributes, unsigned long size) +{ + efi_status_t status; + u64 storage_size, remaining_size, max_size; + + if (!(attributes & EFI_VARIABLE_NON_VOLATILE)) + return 0; + + status = efi.query_variable_info(attributes, &storage_size, + &remaining_size, &max_size); + if (status != EFI_SUCCESS) + return status; + + /* + * We account for that by refusing the write if permitting it would + * reduce the available space to under 5KB. This figure was provided by + * Samsung, so should be safe. + */ + if ((remaining_size - size < EFI_MIN_RESERVE) && + !efi_no_storage_paranoia) { + + /* + * Triggering garbage collection may require that the firmware + * generate a real EFI_OUT_OF_RESOURCES error. We can force + * that by attempting to use more space than is available. + */ + unsigned long dummy_size = remaining_size + 1024; + void *dummy = kzalloc(dummy_size, GFP_ATOMIC); + + if (!dummy) + return EFI_OUT_OF_RESOURCES; + + status = efi.set_variable(efi_dummy_name, &EFI_DUMMY_GUID, + EFI_VARIABLE_NON_VOLATILE | + EFI_VARIABLE_BOOTSERVICE_ACCESS | + EFI_VARIABLE_RUNTIME_ACCESS, + dummy_size, dummy); + + if (status == EFI_SUCCESS) { + /* + * This should have failed, so if it didn't make sure + * that we delete it... + */ + efi_delete_dummy_variable(); + } + + kfree(dummy); + + /* + * The runtime code may now have triggered a garbage collection + * run, so check the variable info again + */ + status = efi.query_variable_info(attributes, &storage_size, + &remaining_size, &max_size); + + if (status != EFI_SUCCESS) + return status; + + /* + * There still isn't enough room, so return an error + */ + if (remaining_size - size < EFI_MIN_RESERVE) + return EFI_OUT_OF_RESOURCES; + } + + return EFI_SUCCESS; +} +EXPORT_SYMBOL_GPL(efi_query_variable_store); + +/* + * The UEFI specification makes it clear that the operating system is free to do + * whatever it wants with boot services code after ExitBootServices() has been + * called. Ignoring this recommendation a significant bunch of EFI implementations + * continue calling into boot services code (SetVirtualAddressMap). In order to + * work around such buggy implementations we reserve boot services region during + * EFI init and make sure it stays executable. Then, after SetVirtualAddressMap(), it +* is discarded. +*/ +void __init efi_reserve_boot_services(void) +{ + void *p; + + for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { + efi_memory_desc_t *md = p; + u64 start = md->phys_addr; + u64 size = md->num_pages << EFI_PAGE_SHIFT; + + if (md->type != EFI_BOOT_SERVICES_CODE && + md->type != EFI_BOOT_SERVICES_DATA) + continue; + /* Only reserve where possible: + * - Not within any already allocated areas + * - Not over any memory area (really needed, if above?) + * - Not within any part of the kernel + * - Not the bios reserved area + */ + if ((start + size > __pa_symbol(_text) + && start <= __pa_symbol(_end)) || + !e820_all_mapped(start, start+size, E820_RAM) || + memblock_is_region_reserved(start, size)) { + /* Could not reserve, skip it */ + md->num_pages = 0; + memblock_dbg("Could not reserve boot range [0x%010llx-0x%010llx]\n", + start, start+size-1); + } else + memblock_reserve(start, size); + } +} + +void __init efi_free_boot_services(void) +{ + void *p; + + for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) { + efi_memory_desc_t *md = p; + unsigned long long start = md->phys_addr; + unsigned long long size = md->num_pages << EFI_PAGE_SHIFT; + + if (md->type != EFI_BOOT_SERVICES_CODE && + md->type != EFI_BOOT_SERVICES_DATA) + continue; + + /* Could not reserve boot area */ + if (!size) + continue; + + free_bootmem_late(start, size); + } + + efi_unmap_memmap(); +} + +/* + * A number of config table entries get remapped to virtual addresses + * after entering EFI virtual mode. However, the kexec kernel requires + * their physical addresses therefore we pass them via setup_data and + * correct those entries to their respective physical addresses here. + * + * Currently only handles smbios which is necessary for some firmware + * implementation. + */ +int __init efi_reuse_config(u64 tables, int nr_tables) +{ + int i, sz, ret = 0; + void *p, *tablep; + struct efi_setup_data *data; + + if (!efi_setup) + return 0; + + if (!efi_enabled(EFI_64BIT)) + return 0; + + data = early_memremap(efi_setup, sizeof(*data)); + if (!data) { + ret = -ENOMEM; + goto out; + } + + if (!data->smbios) + goto out_memremap; + + sz = sizeof(efi_config_table_64_t); + + p = tablep = early_memremap(tables, nr_tables * sz); + if (!p) { + pr_err("Could not map Configuration table!\n"); + ret = -ENOMEM; + goto out_memremap; + } + + for (i = 0; i < efi.systab->nr_tables; i++) { + efi_guid_t guid; + + guid = ((efi_config_table_64_t *)p)->guid; + + if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID)) + ((efi_config_table_64_t *)p)->table = data->smbios; + p += sz; + } + early_memunmap(tablep, nr_tables * sz); + +out_memremap: + early_memunmap(data, sizeof(*data)); +out: + return ret; +} + +void __init efi_apply_memmap_quirks(void) +{ + /* + * Once setup is done earlier, unmap the EFI memory map on mismatched + * firmware/kernel architectures since there is no support for runtime + * services. + */ + if (!efi_runtime_supported()) { + pr_info("efi: Setup done, disabling due to 32/64-bit mismatch\n"); + efi_unmap_memmap(); + } + + /* + * UV doesn't support the new EFI pagetable mapping yet. + */ + if (is_uv_system()) + set_bit(EFI_OLD_MEMMAP, &efi.flags); +} + +/* + * For most modern platforms the preferred method of powering off is via + * ACPI. However, there are some that are known to require the use of + * EFI runtime services and for which ACPI does not work at all. + * + * Using EFI is a last resort, to be used only if no other option + * exists. + */ +bool efi_reboot_required(void) +{ + if (!acpi_gbl_reduced_hardware) + return false; + + efi_reboot_quirk_mode = EFI_RESET_WARM; + return true; +} + +bool efi_poweroff_required(void) +{ + return !!acpi_gbl_reduced_hardware; +} diff --git a/arch/x86/platform/ts5500/ts5500.c b/arch/x86/platform/ts5500/ts5500.c index 9471b9456f25..baf16e72e668 100644 --- a/arch/x86/platform/ts5500/ts5500.c +++ b/arch/x86/platform/ts5500/ts5500.c @@ -1,7 +1,7 @@ /* * Technologic Systems TS-5500 Single Board Computer support * - * Copyright (C) 2013 Savoir-faire Linux Inc. + * Copyright (C) 2013-2014 Savoir-faire Linux Inc. * Vivien Didelot <vivien.didelot@savoirfairelinux.com> * * This program is free software; you can redistribute it and/or modify it under @@ -15,8 +15,8 @@ * state or available options. For further information about sysfs entries, see * Documentation/ABI/testing/sysfs-platform-ts5500. * - * This code actually supports the TS-5500 platform, but it may be extended to - * support similar Technologic Systems x86-based platforms, such as the TS-5600. + * This code may be extended to support similar x86-based platforms. + * Actually, the TS-5500 and TS-5400 are supported. */ #include <linux/delay.h> @@ -32,6 +32,7 @@ /* Product code register */ #define TS5500_PRODUCT_CODE_ADDR 0x74 #define TS5500_PRODUCT_CODE 0x60 /* TS-5500 product code */ +#define TS5400_PRODUCT_CODE 0x40 /* TS-5400 product code */ /* SRAM/RS-485/ADC options, and RS-485 RTS/Automatic RS-485 flags register */ #define TS5500_SRAM_RS485_ADC_ADDR 0x75 @@ -66,6 +67,7 @@ /** * struct ts5500_sbc - TS-5500 board description + * @name: Board model name. * @id: Board product ID. * @sram: Flag for SRAM option. * @rs485: Flag for RS-485 option. @@ -75,6 +77,7 @@ * @jumpers: Bitfield for jumpers' state. */ struct ts5500_sbc { + const char *name; int id; bool sram; bool rs485; @@ -122,13 +125,16 @@ static int __init ts5500_detect_config(struct ts5500_sbc *sbc) if (!request_region(TS5500_PRODUCT_CODE_ADDR, 4, "ts5500")) return -EBUSY; - tmp = inb(TS5500_PRODUCT_CODE_ADDR); - if (tmp != TS5500_PRODUCT_CODE) { - pr_err("This platform is not a TS-5500 (found ID 0x%x)\n", tmp); + sbc->id = inb(TS5500_PRODUCT_CODE_ADDR); + if (sbc->id == TS5500_PRODUCT_CODE) { + sbc->name = "TS-5500"; + } else if (sbc->id == TS5400_PRODUCT_CODE) { + sbc->name = "TS-5400"; + } else { + pr_err("ts5500: unknown product code 0x%x\n", sbc->id); ret = -ENODEV; goto cleanup; } - sbc->id = tmp; tmp = inb(TS5500_SRAM_RS485_ADC_ADDR); sbc->sram = tmp & TS5500_SRAM; @@ -147,48 +153,52 @@ cleanup: return ret; } -static ssize_t ts5500_show_id(struct device *dev, - struct device_attribute *attr, char *buf) +static ssize_t name_show(struct device *dev, struct device_attribute *attr, + char *buf) { struct ts5500_sbc *sbc = dev_get_drvdata(dev); - return sprintf(buf, "0x%.2x\n", sbc->id); + return sprintf(buf, "%s\n", sbc->name); } +static DEVICE_ATTR_RO(name); -static ssize_t ts5500_show_jumpers(struct device *dev, - struct device_attribute *attr, - char *buf) +static ssize_t id_show(struct device *dev, struct device_attribute *attr, + char *buf) { struct ts5500_sbc *sbc = dev_get_drvdata(dev); - return sprintf(buf, "0x%.2x\n", sbc->jumpers >> 1); + return sprintf(buf, "0x%.2x\n", sbc->id); } +static DEVICE_ATTR_RO(id); -#define TS5500_SHOW(field) \ - static ssize_t ts5500_show_##field(struct device *dev, \ - struct device_attribute *attr, \ - char *buf) \ - { \ - struct ts5500_sbc *sbc = dev_get_drvdata(dev); \ - return sprintf(buf, "%d\n", sbc->field); \ - } - -TS5500_SHOW(sram) -TS5500_SHOW(rs485) -TS5500_SHOW(adc) -TS5500_SHOW(ereset) -TS5500_SHOW(itr) +static ssize_t jumpers_show(struct device *dev, struct device_attribute *attr, + char *buf) +{ + struct ts5500_sbc *sbc = dev_get_drvdata(dev); -static DEVICE_ATTR(id, S_IRUGO, ts5500_show_id, NULL); -static DEVICE_ATTR(jumpers, S_IRUGO, ts5500_show_jumpers, NULL); -static DEVICE_ATTR(sram, S_IRUGO, ts5500_show_sram, NULL); -static DEVICE_ATTR(rs485, S_IRUGO, ts5500_show_rs485, NULL); -static DEVICE_ATTR(adc, S_IRUGO, ts5500_show_adc, NULL); -static DEVICE_ATTR(ereset, S_IRUGO, ts5500_show_ereset, NULL); -static DEVICE_ATTR(itr, S_IRUGO, ts5500_show_itr, NULL); + return sprintf(buf, "0x%.2x\n", sbc->jumpers >> 1); +} +static DEVICE_ATTR_RO(jumpers); + +#define TS5500_ATTR_BOOL(_field) \ + static ssize_t _field##_show(struct device *dev, \ + struct device_attribute *attr, char *buf) \ + { \ + struct ts5500_sbc *sbc = dev_get_drvdata(dev); \ + \ + return sprintf(buf, "%d\n", sbc->_field); \ + } \ + static DEVICE_ATTR_RO(_field) + +TS5500_ATTR_BOOL(sram); +TS5500_ATTR_BOOL(rs485); +TS5500_ATTR_BOOL(adc); +TS5500_ATTR_BOOL(ereset); +TS5500_ATTR_BOOL(itr); static struct attribute *ts5500_attributes[] = { &dev_attr_id.attr, + &dev_attr_name.attr, &dev_attr_jumpers.attr, &dev_attr_sram.attr, &dev_attr_rs485.attr, @@ -311,12 +321,14 @@ static int __init ts5500_init(void) if (err) goto error; - ts5500_dio1_pdev.dev.parent = &pdev->dev; - if (platform_device_register(&ts5500_dio1_pdev)) - dev_warn(&pdev->dev, "DIO1 block registration failed\n"); - ts5500_dio2_pdev.dev.parent = &pdev->dev; - if (platform_device_register(&ts5500_dio2_pdev)) - dev_warn(&pdev->dev, "DIO2 block registration failed\n"); + if (sbc->id == TS5500_PRODUCT_CODE) { + ts5500_dio1_pdev.dev.parent = &pdev->dev; + if (platform_device_register(&ts5500_dio1_pdev)) + dev_warn(&pdev->dev, "DIO1 block registration failed\n"); + ts5500_dio2_pdev.dev.parent = &pdev->dev; + if (platform_device_register(&ts5500_dio2_pdev)) + dev_warn(&pdev->dev, "DIO2 block registration failed\n"); + } if (led_classdev_register(&pdev->dev, &ts5500_led_cdev)) dev_warn(&pdev->dev, "LED registration failed\n"); diff --git a/arch/x86/platform/uv/tlb_uv.c b/arch/x86/platform/uv/tlb_uv.c index dfe605ac1bcd..3968d67d366b 100644 --- a/arch/x86/platform/uv/tlb_uv.c +++ b/arch/x86/platform/uv/tlb_uv.c @@ -1,7 +1,7 @@ /* * SGI UltraViolet TLB flush routines. * - * (c) 2008-2012 Cliff Wickman <cpw@sgi.com>, SGI. + * (c) 2008-2014 Cliff Wickman <cpw@sgi.com>, SGI. * * This code is released under the GNU General Public License version 2 or * later. @@ -451,7 +451,7 @@ static inline unsigned long long cycles_2_ns(unsigned long long cyc) /* * The reverse of the above; converts a duration in ns to a duration in cycles. - */ + */ static inline unsigned long long ns_2_cycles(unsigned long long ns) { struct cyc2ns_data *data = cyc2ns_read_begin(); @@ -563,7 +563,7 @@ static int uv1_wait_completion(struct bau_desc *bau_desc, * UV2 could have an extra bit of status in the ACTIVATION_STATUS_2 register. * But not currently used. */ -static unsigned long uv2_read_status(unsigned long offset, int rshft, int desc) +static unsigned long uv2_3_read_status(unsigned long offset, int rshft, int desc) { unsigned long descriptor_status; @@ -606,7 +606,7 @@ int handle_uv2_busy(struct bau_control *bcp) return FLUSH_GIVEUP; } -static int uv2_wait_completion(struct bau_desc *bau_desc, +static int uv2_3_wait_completion(struct bau_desc *bau_desc, unsigned long mmr_offset, int right_shift, struct bau_control *bcp, long try) { @@ -616,7 +616,7 @@ static int uv2_wait_completion(struct bau_desc *bau_desc, long busy_reps = 0; struct ptc_stats *stat = bcp->statp; - descriptor_stat = uv2_read_status(mmr_offset, right_shift, desc); + descriptor_stat = uv2_3_read_status(mmr_offset, right_shift, desc); /* spin on the status MMR, waiting for it to go idle */ while (descriptor_stat != UV2H_DESC_IDLE) { @@ -658,8 +658,7 @@ static int uv2_wait_completion(struct bau_desc *bau_desc, /* not to hammer on the clock */ busy_reps = 0; ttm = get_cycles(); - if ((ttm - bcp->send_message) > - bcp->timeout_interval) + if ((ttm - bcp->send_message) > bcp->timeout_interval) return handle_uv2_busy(bcp); } /* @@ -667,8 +666,7 @@ static int uv2_wait_completion(struct bau_desc *bau_desc, */ cpu_relax(); } - descriptor_stat = uv2_read_status(mmr_offset, right_shift, - desc); + descriptor_stat = uv2_3_read_status(mmr_offset, right_shift, desc); } bcp->conseccompletes++; return FLUSH_COMPLETE; @@ -679,8 +677,7 @@ static int uv2_wait_completion(struct bau_desc *bau_desc, * which register to read and position in that register based on cpu in * current hub. */ -static int wait_completion(struct bau_desc *bau_desc, - struct bau_control *bcp, long try) +static int wait_completion(struct bau_desc *bau_desc, struct bau_control *bcp, long try) { int right_shift; unsigned long mmr_offset; @@ -695,11 +692,9 @@ static int wait_completion(struct bau_desc *bau_desc, } if (bcp->uvhub_version == 1) - return uv1_wait_completion(bau_desc, mmr_offset, right_shift, - bcp, try); + return uv1_wait_completion(bau_desc, mmr_offset, right_shift, bcp, try); else - return uv2_wait_completion(bau_desc, mmr_offset, right_shift, - bcp, try); + return uv2_3_wait_completion(bau_desc, mmr_offset, right_shift, bcp, try); } /* @@ -888,7 +883,7 @@ int uv_flush_send_and_wait(struct cpumask *flush_mask, struct bau_control *bcp, struct ptc_stats *stat = bcp->statp; struct bau_control *hmaster = bcp->uvhub_master; struct uv1_bau_msg_header *uv1_hdr = NULL; - struct uv2_bau_msg_header *uv2_hdr = NULL; + struct uv2_3_bau_msg_header *uv2_3_hdr = NULL; if (bcp->uvhub_version == 1) { uv1 = 1; @@ -902,27 +897,28 @@ int uv_flush_send_and_wait(struct cpumask *flush_mask, struct bau_control *bcp, if (uv1) uv1_hdr = &bau_desc->header.uv1_hdr; else - uv2_hdr = &bau_desc->header.uv2_hdr; + /* uv2 and uv3 */ + uv2_3_hdr = &bau_desc->header.uv2_3_hdr; do { if (try == 0) { if (uv1) uv1_hdr->msg_type = MSG_REGULAR; else - uv2_hdr->msg_type = MSG_REGULAR; + uv2_3_hdr->msg_type = MSG_REGULAR; seq_number = bcp->message_number++; } else { if (uv1) uv1_hdr->msg_type = MSG_RETRY; else - uv2_hdr->msg_type = MSG_RETRY; + uv2_3_hdr->msg_type = MSG_RETRY; stat->s_retry_messages++; } if (uv1) uv1_hdr->sequence = seq_number; else - uv2_hdr->sequence = seq_number; + uv2_3_hdr->sequence = seq_number; index = (1UL << AS_PUSH_SHIFT) | bcp->uvhub_cpu; bcp->send_message = get_cycles(); @@ -1080,8 +1076,10 @@ static int set_distrib_bits(struct cpumask *flush_mask, struct bau_control *bcp, * done. The returned pointer is valid till preemption is re-enabled. */ const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask, - struct mm_struct *mm, unsigned long start, - unsigned long end, unsigned int cpu) + struct mm_struct *mm, + unsigned long start, + unsigned long end, + unsigned int cpu) { int locals = 0; int remotes = 0; @@ -1268,6 +1266,7 @@ void uv_bau_message_interrupt(struct pt_regs *regs) if (bcp->uvhub_version == 2) process_uv2_message(&msgdesc, bcp); else + /* no error workaround for uv1 or uv3 */ bau_process_message(&msgdesc, bcp, 1); msg++; @@ -1325,8 +1324,12 @@ static void __init enable_timeouts(void) */ mmr_image |= (1L << SOFTACK_MSHIFT); if (is_uv2_hub()) { + /* do not touch the legacy mode bit */ /* hw bug workaround; do not use extended status */ mmr_image &= ~(1L << UV2_EXT_SHFT); + } else if (is_uv3_hub()) { + mmr_image &= ~(1L << PREFETCH_HINT_SHFT); + mmr_image |= (1L << SB_STATUS_SHFT); } write_mmr_misc_control(pnode, mmr_image); } @@ -1476,7 +1479,7 @@ static ssize_t ptc_proc_write(struct file *file, const char __user *user, return count; } - if (strict_strtol(optstr, 10, &input_arg) < 0) { + if (kstrtol(optstr, 10, &input_arg) < 0) { printk(KERN_DEBUG "%s is invalid\n", optstr); return -EINVAL; } @@ -1692,7 +1695,7 @@ static void activation_descriptor_init(int node, int pnode, int base_pnode) struct bau_desc *bau_desc; struct bau_desc *bd2; struct uv1_bau_msg_header *uv1_hdr; - struct uv2_bau_msg_header *uv2_hdr; + struct uv2_3_bau_msg_header *uv2_3_hdr; struct bau_control *bcp; /* @@ -1739,15 +1742,15 @@ static void activation_descriptor_init(int node, int pnode, int base_pnode) */ } else { /* - * BIOS uses legacy mode, but UV2 hardware always + * BIOS uses legacy mode, but uv2 and uv3 hardware always * uses native mode for selective broadcasts. */ - uv2_hdr = &bd2->header.uv2_hdr; - uv2_hdr->swack_flag = 1; - uv2_hdr->base_dest_nasid = + uv2_3_hdr = &bd2->header.uv2_3_hdr; + uv2_3_hdr->swack_flag = 1; + uv2_3_hdr->base_dest_nasid = UV_PNODE_TO_NASID(base_pnode); - uv2_hdr->dest_subnodeid = UV_LB_SUBNODEID; - uv2_hdr->command = UV_NET_ENDPOINT_INTD; + uv2_3_hdr->dest_subnodeid = UV_LB_SUBNODEID; + uv2_3_hdr->command = UV_NET_ENDPOINT_INTD; } } for_each_present_cpu(cpu) { @@ -1858,6 +1861,7 @@ static int calculate_destination_timeout(void) ts_ns *= (mult1 * mult2); ret = ts_ns / 1000; } else { + /* same destination timeout for uv2 and uv3 */ /* 4 bits 0/1 for 10/80us base, 3 bits of multiplier */ mmr_image = uv_read_local_mmr(UVH_LB_BAU_MISC_CONTROL); mmr_image = (mmr_image & UV_SA_MASK) >> UV_SA_SHFT; @@ -2012,8 +2016,10 @@ static int scan_sock(struct socket_desc *sdp, struct uvhub_desc *bdp, bcp->uvhub_version = 1; else if (is_uv2_hub()) bcp->uvhub_version = 2; + else if (is_uv3_hub()) + bcp->uvhub_version = 3; else { - printk(KERN_EMERG "uvhub version not 1 or 2\n"); + printk(KERN_EMERG "uvhub version not 1, 2 or 3\n"); return 1; } bcp->uvhub_master = *hmasterp; @@ -2138,9 +2144,10 @@ static int __init uv_bau_init(void) } vector = UV_BAU_MESSAGE; - for_each_possible_blade(uvhub) + for_each_possible_blade(uvhub) { if (uv_blade_nr_possible_cpus(uvhub)) init_uvhub(uvhub, vector, uv_base_pnode); + } alloc_intr_gate(vector, uv_bau_message_intr1); |