diff options
Diffstat (limited to 'Documentation/devicetree')
16 files changed, 489 insertions, 48 deletions
diff --git a/Documentation/devicetree/bindings/arm/altera/socfpga-eccmgr.txt b/Documentation/devicetree/bindings/arm/altera/socfpga-eccmgr.txt index 885f93d14ef9..5a6b16070a33 100644 --- a/Documentation/devicetree/bindings/arm/altera/socfpga-eccmgr.txt +++ b/Documentation/devicetree/bindings/arm/altera/socfpga-eccmgr.txt @@ -3,6 +3,7 @@ This driver uses the EDAC framework to implement the SOCFPGA ECC Manager. The ECC Manager counts and corrects single bit errors and counts/handles double bit errors which are uncorrectable. +Cyclone5 and Arria5 ECC Manager Required Properties: - compatible : Should be "altr,socfpga-ecc-manager" - #address-cells: must be 1 @@ -47,3 +48,52 @@ Example: interrupts = <0 178 1>, <0 179 1>; }; }; + +Arria10 SoCFPGA ECC Manager +The Arria10 SoC ECC Manager handles the IRQs for each peripheral +in a shared register instead of individual IRQs like the Cyclone5 +and Arria5. Therefore the device tree is different as well. + +Required Properties: +- compatible : Should be "altr,socfpga-a10-ecc-manager" +- altr,sysgr-syscon : phandle to Arria10 System Manager Block + containing the ECC manager registers. +- #address-cells: must be 1 +- #size-cells: must be 1 +- interrupts : Should be single bit error interrupt, then double bit error + interrupt. Note the rising edge type. +- ranges : standard definition, should translate from local addresses + +Subcomponents: + +L2 Cache ECC +Required Properties: +- compatible : Should be "altr,socfpga-a10-l2-ecc" +- reg : Address and size for ECC error interrupt clear registers. + +On-Chip RAM ECC +Required Properties: +- compatible : Should be "altr,socfpga-a10-ocram-ecc" +- reg : Address and size for ECC block registers. + +Example: + + eccmgr: eccmgr@ffd06000 { + compatible = "altr,socfpga-a10-ecc-manager"; + altr,sysmgr-syscon = <&sysmgr>; + #address-cells = <1>; + #size-cells = <1>; + interrupts = <0 2 IRQ_TYPE_LEVEL_HIGH>, + <0 0 IRQ_TYPE_LEVEL_HIGH>; + ranges; + + l2-ecc@ffd06010 { + compatible = "altr,socfpga-a10-l2-ecc"; + reg = <0xffd06010 0x4>; + }; + + ocram-ecc@ff8c3000 { + compatible = "altr,socfpga-a10-ocram-ecc"; + reg = <0xff8c3000 0x90>; + }; + }; diff --git a/Documentation/devicetree/bindings/arm/pmu.txt b/Documentation/devicetree/bindings/arm/pmu.txt index 6eb73be9433e..74d5417d0410 100644 --- a/Documentation/devicetree/bindings/arm/pmu.txt +++ b/Documentation/devicetree/bindings/arm/pmu.txt @@ -22,10 +22,11 @@ Required properties: "arm,arm11mpcore-pmu" "arm,arm1176-pmu" "arm,arm1136-pmu" + "brcm,vulcan-pmu" + "cavium,thunder-pmu" "qcom,scorpion-pmu" "qcom,scorpion-mp-pmu" "qcom,krait-pmu" - "cavium,thunder-pmu" - interrupts : 1 combined interrupt or 1 per core. If the interrupt is a per-cpu interrupt (PPI) then 1 interrupt should be specified. diff --git a/Documentation/devicetree/bindings/hwmon/ltc2978.txt b/Documentation/devicetree/bindings/hwmon/ltc2978.txt index a7afbf60bb9c..bf2a47bbdc58 100644 --- a/Documentation/devicetree/bindings/hwmon/ltc2978.txt +++ b/Documentation/devicetree/bindings/hwmon/ltc2978.txt @@ -13,6 +13,7 @@ Required properties: * "lltc,ltc3886" * "lltc,ltc3887" * "lltc,ltm2987" + * "lltc,ltm4675" * "lltc,ltm4676" - reg: I2C slave address diff --git a/Documentation/devicetree/bindings/leds/common.txt b/Documentation/devicetree/bindings/leds/common.txt index 68419843e32f..af10678ea2f6 100644 --- a/Documentation/devicetree/bindings/leds/common.txt +++ b/Documentation/devicetree/bindings/leds/common.txt @@ -37,6 +37,9 @@ Optional properties for child nodes: property is mandatory for the LEDs in the non-flash modes (e.g. torch or indicator). +- panic-indicator : This property specifies that the LED should be used, + if at all possible, as a panic indicator. + Required properties for flash LED child nodes: - flash-max-microamp : Maximum flash LED supply current in microamperes. - flash-max-timeout-us : Maximum timeout in microseconds after which the flash diff --git a/Documentation/devicetree/bindings/leds/leds-gpio.txt b/Documentation/devicetree/bindings/leds/leds-gpio.txt index fea1ebfe24a9..cbbeb1850910 100644 --- a/Documentation/devicetree/bindings/leds/leds-gpio.txt +++ b/Documentation/devicetree/bindings/leds/leds-gpio.txt @@ -23,6 +23,8 @@ LED sub-node properties: property is not present. - retain-state-suspended: (optional) The suspend state can be retained.Such as charge-led gpio. +- panic-indicator : (optional) + see Documentation/devicetree/bindings/leds/common.txt Examples: diff --git a/Documentation/devicetree/bindings/mmc/sdhci-st.txt b/Documentation/devicetree/bindings/mmc/sdhci-st.txt index 18d950df2749..88faa91125bf 100644 --- a/Documentation/devicetree/bindings/mmc/sdhci-st.txt +++ b/Documentation/devicetree/bindings/mmc/sdhci-st.txt @@ -38,7 +38,7 @@ Optional properties: - bus-width: Number of data lines. See: Documentation/devicetree/bindings/mmc/mmc.txt. -- max-frequency: Can be 200MHz, 100Mz or 50MHz (default) and used for +- max-frequency: Can be 200MHz, 100Mz or 50MHz (default) and used for configuring the CCONFIG3 in the mmcss. See: Documentation/devicetree/bindings/mmc/mmc.txt. @@ -48,7 +48,7 @@ Optional properties: - vqmmc-supply: Phandle to the regulator dt node, mentioned as the vcc/vdd supply in eMMC/SD specs. -- sd-uhs--sdr50: To enable the SDR50 in the mmcss. +- sd-uhs-sdr50: To enable the SDR50 in the mmcss. See: Documentation/devicetree/bindings/mmc/mmc.txt. - sd-uhs-sdr104: To enable the SDR104 in the mmcss. diff --git a/Documentation/devicetree/bindings/mmc/tmio_mmc.txt b/Documentation/devicetree/bindings/mmc/tmio_mmc.txt index 7fb746dd1a68..0f610d4b5b00 100644 --- a/Documentation/devicetree/bindings/mmc/tmio_mmc.txt +++ b/Documentation/devicetree/bindings/mmc/tmio_mmc.txt @@ -26,3 +26,6 @@ Required properties: Optional properties: - toshiba,mmc-wrprotect-disable: write-protect detection is unavailable +- pinctrl-names: should be "default", "state_uhs" +- pinctrl-0: should contain default/high speed pin ctrl +- pinctrl-1: should contain uhs mode pin ctrl diff --git a/Documentation/devicetree/bindings/mmc/usdhi6rol0.txt b/Documentation/devicetree/bindings/mmc/usdhi6rol0.txt index 8babdaa8623b..6d1b7971d078 100644 --- a/Documentation/devicetree/bindings/mmc/usdhi6rol0.txt +++ b/Documentation/devicetree/bindings/mmc/usdhi6rol0.txt @@ -12,6 +12,12 @@ Optional properties: - vmmc-supply: a phandle of a regulator, supplying Vcc to the card - vqmmc-supply: a phandle of a regulator, supplying VccQ to the card +- pinctrl-names: Can contain a "default" entry and a "state_uhs" + entry. The state_uhs entry is used together with the default + entry when the board requires distinct settings for UHS speeds. + +- pinctrl-N: One property for each name listed in pinctrl-names, see + ../pinctrl/pinctrl-bindings.txt. Additionally any standard mmc bindings from mmc.txt can be used. diff --git a/Documentation/devicetree/bindings/numa.txt b/Documentation/devicetree/bindings/numa.txt new file mode 100644 index 000000000000..21b35053ca5a --- /dev/null +++ b/Documentation/devicetree/bindings/numa.txt @@ -0,0 +1,275 @@ +============================================================================== +NUMA binding description. +============================================================================== + +============================================================================== +1 - Introduction +============================================================================== + +Systems employing a Non Uniform Memory Access (NUMA) architecture contain +collections of hardware resources including processors, memory, and I/O buses, +that comprise what is commonly known as a NUMA node. +Processor accesses to memory within the local NUMA node is generally faster +than processor accesses to memory outside of the local NUMA node. +DT defines interfaces that allow the platform to convey NUMA node +topology information to OS. + +============================================================================== +2 - numa-node-id +============================================================================== + +For the purpose of identification, each NUMA node is associated with a unique +token known as a node id. For the purpose of this binding +a node id is a 32-bit integer. + +A device node is associated with a NUMA node by the presence of a +numa-node-id property which contains the node id of the device. + +Example: + /* numa node 0 */ + numa-node-id = <0>; + + /* numa node 1 */ + numa-node-id = <1>; + +============================================================================== +3 - distance-map +============================================================================== + +The optional device tree node distance-map describes the relative +distance (memory latency) between all numa nodes. + +- compatible : Should at least contain "numa-distance-map-v1". + +- distance-matrix + This property defines a matrix to describe the relative distances + between all numa nodes. + It is represented as a list of node pairs and their relative distance. + + Note: + 1. Each entry represents distance from first node to second node. + The distances are equal in either direction. + 2. The distance from a node to self (local distance) is represented + with value 10 and all internode distance should be represented with + a value greater than 10. + 3. distance-matrix should have entries in lexicographical ascending + order of nodes. + 4. There must be only one device node distance-map which must + reside in the root node. + 5. If the distance-map node is not present, a default + distance-matrix is used. + +Example: + 4 nodes connected in mesh/ring topology as below, + + 0_______20______1 + | | + | | + 20 20 + | | + | | + |_______________| + 3 20 2 + + if relative distance for each hop is 20, + then internode distance would be, + 0 -> 1 = 20 + 1 -> 2 = 20 + 2 -> 3 = 20 + 3 -> 0 = 20 + 0 -> 2 = 40 + 1 -> 3 = 40 + + and dt presentation for this distance matrix is, + + distance-map { + compatible = "numa-distance-map-v1"; + distance-matrix = <0 0 10>, + <0 1 20>, + <0 2 40>, + <0 3 20>, + <1 0 20>, + <1 1 10>, + <1 2 20>, + <1 3 40>, + <2 0 40>, + <2 1 20>, + <2 2 10>, + <2 3 20>, + <3 0 20>, + <3 1 40>, + <3 2 20>, + <3 3 10>; + }; + +============================================================================== +4 - Example dts +============================================================================== + +Dual socket system consists of 2 boards connected through ccn bus and +each board having one socket/soc of 8 cpus, memory and pci bus. + + memory@c00000 { + device_type = "memory"; + reg = <0x0 0xc00000 0x0 0x80000000>; + /* node 0 */ + numa-node-id = <0>; + }; + + memory@10000000000 { + device_type = "memory"; + reg = <0x100 0x0 0x0 0x80000000>; + /* node 1 */ + numa-node-id = <1>; + }; + + cpus { + #address-cells = <2>; + #size-cells = <0>; + + cpu@0 { + device_type = "cpu"; + compatible = "arm,armv8"; + reg = <0x0 0x0>; + enable-method = "psci"; + /* node 0 */ + numa-node-id = <0>; + }; + cpu@1 { + device_type = "cpu"; + compatible = "arm,armv8"; + reg = <0x0 0x1>; + enable-method = "psci"; + numa-node-id = <0>; + }; + cpu@2 { + device_type = "cpu"; + compatible = "arm,armv8"; + reg = <0x0 0x2>; + enable-method = "psci"; + numa-node-id = <0>; + }; + cpu@3 { + device_type = "cpu"; + compatible = "arm,armv8"; + reg = <0x0 0x3>; + enable-method = "psci"; + numa-node-id = <0>; + }; + cpu@4 { + device_type = "cpu"; + compatible = "arm,armv8"; + reg = <0x0 0x4>; + enable-method = "psci"; + numa-node-id = <0>; + }; + cpu@5 { + device_type = "cpu"; + compatible = "arm,armv8"; + reg = <0x0 0x5>; + enable-method = "psci"; + numa-node-id = <0>; + }; + cpu@6 { + device_type = "cpu"; + compatible = "arm,armv8"; + reg = <0x0 0x6>; + enable-method = "psci"; + numa-node-id = <0>; + }; + cpu@7 { + device_type = "cpu"; + compatible = "arm,armv8"; + reg = <0x0 0x7>; + enable-method = "psci"; + numa-node-id = <0>; + }; + cpu@8 { + device_type = "cpu"; + compatible = "arm,armv8"; + reg = <0x0 0x8>; + enable-method = "psci"; + /* node 1 */ + numa-node-id = <1>; + }; + cpu@9 { + device_type = "cpu"; + compatible = "arm,armv8"; + reg = <0x0 0x9>; + enable-method = "psci"; + numa-node-id = <1>; + }; + cpu@a { + device_type = "cpu"; + compatible = "arm,armv8"; + reg = <0x0 0xa>; + enable-method = "psci"; + numa-node-id = <1>; + }; + cpu@b { + device_type = "cpu"; + compatible = "arm,armv8"; + reg = <0x0 0xb>; + enable-method = "psci"; + numa-node-id = <1>; + }; + cpu@c { + device_type = "cpu"; + compatible = "arm,armv8"; + reg = <0x0 0xc>; + enable-method = "psci"; + numa-node-id = <1>; + }; + cpu@d { + device_type = "cpu"; + compatible = "arm,armv8"; + reg = <0x0 0xd>; + enable-method = "psci"; + numa-node-id = <1>; + }; + cpu@e { + device_type = "cpu"; + compatible = "arm,armv8"; + reg = <0x0 0xe>; + enable-method = "psci"; + numa-node-id = <1>; + }; + cpu@f { + device_type = "cpu"; + compatible = "arm,armv8"; + reg = <0x0 0xf>; + enable-method = "psci"; + numa-node-id = <1>; + }; + }; + + pcie0: pcie0@848000000000 { + compatible = "arm,armv8"; + device_type = "pci"; + bus-range = <0 255>; + #size-cells = <2>; + #address-cells = <3>; + reg = <0x8480 0x00000000 0 0x10000000>; /* Configuration space */ + ranges = <0x03000000 0x8010 0x00000000 0x8010 0x00000000 0x70 0x00000000>; + /* node 0 */ + numa-node-id = <0>; + }; + + pcie1: pcie1@948000000000 { + compatible = "arm,armv8"; + device_type = "pci"; + bus-range = <0 255>; + #size-cells = <2>; + #address-cells = <3>; + reg = <0x9480 0x00000000 0 0x10000000>; /* Configuration space */ + ranges = <0x03000000 0x9010 0x00000000 0x9010 0x00000000 0x70 0x00000000>; + /* node 1 */ + numa-node-id = <1>; + }; + + distance-map { + compatible = "numa-distance-map-v1"; + distance-matrix = <0 0 10>, + <0 1 20>, + <1 1 10>; + }; diff --git a/Documentation/devicetree/bindings/regmap/regmap.txt b/Documentation/devicetree/bindings/regmap/regmap.txt index e98a9652ccc8..0127be360fe8 100644 --- a/Documentation/devicetree/bindings/regmap/regmap.txt +++ b/Documentation/devicetree/bindings/regmap/regmap.txt @@ -1,50 +1,29 @@ -Device-Tree binding for regmap - -The endianness mode of CPU & Device scenarios: -Index Device Endianness properties ---------------------------------------------------- -1 BE 'big-endian' -2 LE 'little-endian' -3 Native 'native-endian' - -For one device driver, which will run in different scenarios above -on different SoCs using the devicetree, we need one way to simplify -this. +Devicetree binding for regmap Optional properties: -- {big,little,native}-endian: these are boolean properties, if absent - then the implementation will choose a default based on the device - being controlled. These properties are for register values and all - the buffers only. Native endian means that the CPU and device have - the same endianness. -Examples: -Scenario 1 : CPU in LE mode & device in LE mode. -dev: dev@40031000 { - compatible = "name"; - reg = <0x40031000 0x1000>; - ... -}; + little-endian, + big-endian, + native-endian: See common-properties.txt for a definition -Scenario 2 : CPU in LE mode & device in BE mode. -dev: dev@40031000 { - compatible = "name"; - reg = <0x40031000 0x1000>; - ... - big-endian; -}; +Note: +Regmap defaults to little-endian register access on MMIO based +devices, this is by far the most common setting. On CPU +architectures that typically run big-endian operating systems +(e.g. PowerPC), registers can be defined as big-endian and must +be marked that way in the devicetree. -Scenario 3 : CPU in BE mode & device in BE mode. -dev: dev@40031000 { - compatible = "name"; - reg = <0x40031000 0x1000>; - ... -}; +On SoCs that can be operated in both big-endian and little-endian +modes, with a single hardware switch controlling both the endianess +of the CPU and a byteswap for MMIO registers (e.g. many Broadcom MIPS +chips), "native-endian" is used to allow using the same device tree +blob in both cases. -Scenario 4 : CPU in BE mode & device in LE mode. +Examples: +Scenario 1 : a register set in big-endian mode. dev: dev@40031000 { - compatible = "name"; + compatible = "syscon"; reg = <0x40031000 0x1000>; + big-endian; ... - little-endian; }; diff --git a/Documentation/devicetree/bindings/regulator/max8973-regulator.txt b/Documentation/devicetree/bindings/regulator/max8973-regulator.txt index f80ea2fe27e6..c2c68fcc1b41 100644 --- a/Documentation/devicetree/bindings/regulator/max8973-regulator.txt +++ b/Documentation/devicetree/bindings/regulator/max8973-regulator.txt @@ -32,6 +32,13 @@ Optional properties: Enhanced transient response (ETR) will affect the configuration of CKADV. +-junction-warn-millicelsius: u32, junction warning temperature threshold + in millicelsius. If die temperature crosses this level then + device generates the warning interrupts. + +Please note that thermal functionality is only supported on MAX77621. The +supported threshold warning temperature for MAX77621 are 120 degC and 140 degC. + Example: max8973@1b { diff --git a/Documentation/devicetree/bindings/regulator/pv88080.txt b/Documentation/devicetree/bindings/regulator/pv88080.txt new file mode 100644 index 000000000000..38a614210dcb --- /dev/null +++ b/Documentation/devicetree/bindings/regulator/pv88080.txt @@ -0,0 +1,49 @@ +* Powerventure Semiconductor PV88080 Voltage Regulator + +Required properties: +- compatible: "pvs,pv88080". +- reg: I2C slave address, usually 0x49. +- interrupts: the interrupt outputs of the controller +- regulators: A node that houses a sub-node for each regulator within the + device. Each sub-node is identified using the node's name, with valid + values listed below. The content of each sub-node is defined by the + standard binding for regulators; see regulator.txt. + BUCK1, BUCK2, and BUCK3. + +Optional properties: +- Any optional property defined in regulator.txt + +Example + + pmic: pv88080@49 { + compatible = "pvs,pv88080"; + reg = <0x49>; + interrupt-parent = <&gpio>; + interrupts = <24 24>; + + regulators { + BUCK1 { + regulator-name = "buck1"; + regulator-min-microvolt = < 600000>; + regulator-max-microvolt = <1393750>; + regulator-min-microamp = < 220000>; + regulator-max-microamp = <7040000>; + }; + + BUCK2 { + regulator-name = "buck2"; + regulator-min-microvolt = < 600000>; + regulator-max-microvolt = <1393750>; + regulator-min-microamp = <1496000>; + regulator-max-microamp = <4189000>; + }; + + BUCK3 { + regulator-name = "buck3"; + regulator-min-microvolt = <1400000>; + regulator-max-microvolt = <2193750>; + regulator-min-microamp = <1496000>; + regulator-max-microamp = <4189000>; + }; + }; + }; diff --git a/Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt b/Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt index d00bfd8624a5..46c6f3ed1a1c 100644 --- a/Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt +++ b/Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt @@ -7,6 +7,7 @@ Qualcomm SPMI Regulators "qcom,pm8841-regulators" "qcom,pm8916-regulators" "qcom,pm8941-regulators" + "qcom,pm8994-regulators" - interrupts: Usage: optional @@ -68,6 +69,37 @@ Qualcomm SPMI Regulators Definition: Reference to regulator supplying the input pin, as described in the data sheet. +- vdd_s1-supply: +- vdd_s2-supply: +- vdd_s3-supply: +- vdd_s4-supply: +- vdd_s5-supply: +- vdd_s6-supply: +- vdd_s7-supply: +- vdd_s8-supply: +- vdd_s9-supply: +- vdd_s10-supply: +- vdd_s11-supply: +- vdd_s12-supply: +- vdd_l1-supply: +- vdd_l2_l26_l28-supply: +- vdd_l3_l11-supply: +- vdd_l4_l27_l31-supply: +- vdd_l5_l7-supply: +- vdd_l6_l12_l32-supply: +- vdd_l8_l16_l30-supply: +- vdd_l9_l10_l18_l22-supply: +- vdd_l13_l19_l23_l24-supply: +- vdd_l14_l15-supply: +- vdd_l17_l29-supply: +- vdd_l20_l21-supply: +- vdd_l25-supply: +- vdd_lvs_1_2-supply: + Usage: optional (pm8994 only) + Value type: <phandle> + Definition: Reference to regulator supplying the input pin, as + described in the data sheet. + The regulator node houses sub-nodes for each regulator within the device. Each sub-node is identified using the node's name, with valid values listed for each @@ -85,6 +117,11 @@ pm8941: l15, l16, l17, l18, l19, l20, l21, l22, l23, l24, lvs1, lvs2, lvs3, mvs1, mvs2 +pm8994: + s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, l1, l2, l3, l4, l5, + l6, l7, l8, l9, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l20, + l21, l22, l23, l24, l25, l26, l27, l28, l29, l30, l31, l32, lvs1, lvs2 + The content of each sub-node is defined by the standard binding for regulators - see regulator.txt - with additional custom properties described below: diff --git a/Documentation/devicetree/bindings/regulator/regulator-max77620.txt b/Documentation/devicetree/bindings/regulator/regulator-max77620.txt index b3c8ca672024..1c4bfe786736 100644 --- a/Documentation/devicetree/bindings/regulator/regulator-max77620.txt +++ b/Documentation/devicetree/bindings/regulator/regulator-max77620.txt @@ -94,6 +94,28 @@ Following are additional properties: This is applicable if suspend state FPS source is selected as FPS0, FPS1 or FPS2. +- maxim,ramp-rate-setting: integer, ramp rate(uV/us) setting to be + configured to the device. + The platform may have different ramp + rate than advertised ramp rate if it has + design variation from Maxim's + recommended. On this case, platform + specific ramp rate is used for ramp time + calculation and this property is used + for device register configurations. + The measured ramp rate of platform is + provided by the regulator-ramp-delay + as described in <devicetree/bindings/ + regulator/regulator.txt>. + Maxim Max77620 supports following ramp + delay: + SD: 13.75mV/us, 27.5mV/us, 55mV/us + LDOs: 5mV/us, 100mV/us + +Note: If the measured ramp delay is same as advertised ramp delay then it is not +required to provide the ramp delay with property "maxim,ramp-rate-setting". The +ramp rate can be provided by the regulator-ramp-delay which will be used for +ramp time calculation for voltage change as well as for device configuration. Example: -------- diff --git a/Documentation/devicetree/bindings/regulator/ti-abb-regulator.txt b/Documentation/devicetree/bindings/regulator/ti-abb-regulator.txt index c58db75f959e..c3f6546ebac7 100644 --- a/Documentation/devicetree/bindings/regulator/ti-abb-regulator.txt +++ b/Documentation/devicetree/bindings/regulator/ti-abb-regulator.txt @@ -14,8 +14,8 @@ Required Properties: - "setup-address" - contains setup register address of ABB module (ti,abb-v3) - "int-address" - contains address of interrupt register for ABB module (also see Optional properties) -- #address-cell: should be 0 -- #size-cell: should be 0 +- #address-cells: should be 0 +- #size-cells: should be 0 - clocks: should point to the clock node used by ABB module - ti,settling-time: Settling time in uSecs from SoC documentation for ABB module to settle down(target time for SR2_WTCNT_VALUE). @@ -69,7 +69,7 @@ Example #1: Simplest configuration (no efuse data, hard coded ABB table): abb_x: regulator-abb-x { compatible = "ti,abb-v1"; regulator-name = "abb_x"; - #address-cell = <0>; + #address-cells = <0>; #size-cells = <0>; reg = <0x483072f0 0x8>, <0x48306818 0x4>; reg-names = "base-address", "int-address"; @@ -89,7 +89,7 @@ Example #2: Efuse bits contain ABB mode setting (no LDO override capability) abb_y: regulator-abb-y { compatible = "ti,abb-v2"; regulator-name = "abb_y"; - #address-cell = <0>; + #address-cells = <0>; #size-cells = <0>; reg = <0x4a307bd0 0x8>, <0x4a306014 0x4>, <0x4A002268 0x8>; reg-names = "base-address", "int-address", "efuse-address"; @@ -110,7 +110,7 @@ Example #3: Efuse bits contain ABB mode setting and LDO override capability abb_z: regulator-abb-z { compatible = "ti,abb-v2"; regulator-name = "abb_z"; - #address-cell = <0>; + #address-cells = <0>; #size-cells = <0>; reg = <0x4ae07ce4 0x8>, <0x4ae06010 0x4>, <0x4a002194 0x8>, <0x4ae0C314 0x4>; diff --git a/Documentation/devicetree/bindings/regulator/twl-regulator.txt b/Documentation/devicetree/bindings/regulator/twl-regulator.txt index 75b0c1669504..74a91c4f8530 100644 --- a/Documentation/devicetree/bindings/regulator/twl-regulator.txt +++ b/Documentation/devicetree/bindings/regulator/twl-regulator.txt @@ -57,6 +57,12 @@ For twl4030 regulators/LDOs Optional properties: - Any optional property defined in bindings/regulator/regulator.txt +For twl4030 regulators/LDOs: + - regulator-initial-mode: + - 0x08 - Sleep mode, the nominal output voltage is maintained with low power + consumption with low load current capability. + - 0x0e - Active mode, the regulator can deliver its nominal output voltage + with full-load current capability. Example: |