diff options
Diffstat (limited to 'Documentation/devicetree/bindings/arm/idle-states.txt')
-rw-r--r-- | Documentation/devicetree/bindings/arm/idle-states.txt | 706 |
1 files changed, 0 insertions, 706 deletions
diff --git a/Documentation/devicetree/bindings/arm/idle-states.txt b/Documentation/devicetree/bindings/arm/idle-states.txt deleted file mode 100644 index 771f5d20ae18..000000000000 --- a/Documentation/devicetree/bindings/arm/idle-states.txt +++ /dev/null @@ -1,706 +0,0 @@ -========================================== -ARM idle states binding description -========================================== - -========================================== -1 - Introduction -========================================== - -ARM systems contain HW capable of managing power consumption dynamically, -where cores can be put in different low-power states (ranging from simple -wfi to power gating) according to OS PM policies. The CPU states representing -the range of dynamic idle states that a processor can enter at run-time, can be -specified through device tree bindings representing the parameters required -to enter/exit specific idle states on a given processor. - -According to the Server Base System Architecture document (SBSA, [3]), the -power states an ARM CPU can be put into are identified by the following list: - -- Running -- Idle_standby -- Idle_retention -- Sleep -- Off - -The power states described in the SBSA document define the basic CPU states on -top of which ARM platforms implement power management schemes that allow an OS -PM implementation to put the processor in different idle states (which include -states listed above; "off" state is not an idle state since it does not have -wake-up capabilities, hence it is not considered in this document). - -Idle state parameters (e.g. entry latency) are platform specific and need to be -characterized with bindings that provide the required information to OS PM -code so that it can build the required tables and use them at runtime. - -The device tree binding definition for ARM idle states is the subject of this -document. - -=========================================== -2 - idle-states definitions -=========================================== - -Idle states are characterized for a specific system through a set of -timing and energy related properties, that underline the HW behaviour -triggered upon idle states entry and exit. - -The following diagram depicts the CPU execution phases and related timing -properties required to enter and exit an idle state: - -..__[EXEC]__|__[PREP]__|__[ENTRY]__|__[IDLE]__|__[EXIT]__|__[EXEC]__.. - | | | | | - - |<------ entry ------->| - | latency | - |<- exit ->| - | latency | - |<-------- min-residency -------->| - |<------- wakeup-latency ------->| - - Diagram 1: CPU idle state execution phases - -EXEC: Normal CPU execution. - -PREP: Preparation phase before committing the hardware to idle mode - like cache flushing. This is abortable on pending wake-up - event conditions. The abort latency is assumed to be negligible - (i.e. less than the ENTRY + EXIT duration). If aborted, CPU - goes back to EXEC. This phase is optional. If not abortable, - this should be included in the ENTRY phase instead. - -ENTRY: The hardware is committed to idle mode. This period must run - to completion up to IDLE before anything else can happen. - -IDLE: This is the actual energy-saving idle period. This may last - between 0 and infinite time, until a wake-up event occurs. - -EXIT: Period during which the CPU is brought back to operational - mode (EXEC). - -entry-latency: Worst case latency required to enter the idle state. The -exit-latency may be guaranteed only after entry-latency has passed. - -min-residency: Minimum period, including preparation and entry, for a given -idle state to be worthwhile energywise. - -wakeup-latency: Maximum delay between the signaling of a wake-up event and the -CPU being able to execute normal code again. If not specified, this is assumed -to be entry-latency + exit-latency. - -These timing parameters can be used by an OS in different circumstances. - -An idle CPU requires the expected min-residency time to select the most -appropriate idle state based on the expected expiry time of the next IRQ -(i.e. wake-up) that causes the CPU to return to the EXEC phase. - -An operating system scheduler may need to compute the shortest wake-up delay -for CPUs in the system by detecting how long will it take to get a CPU out -of an idle state, e.g.: - -wakeup-delay = exit-latency + max(entry-latency - (now - entry-timestamp), 0) - -In other words, the scheduler can make its scheduling decision by selecting -(e.g. waking-up) the CPU with the shortest wake-up delay. -The wake-up delay must take into account the entry latency if that period -has not expired. The abortable nature of the PREP period can be ignored -if it cannot be relied upon (e.g. the PREP deadline may occur much sooner than -the worst case since it depends on the CPU operating conditions, i.e. caches -state). - -An OS has to reliably probe the wakeup-latency since some devices can enforce -latency constraint guarantees to work properly, so the OS has to detect the -worst case wake-up latency it can incur if a CPU is allowed to enter an -idle state, and possibly to prevent that to guarantee reliable device -functioning. - -The min-residency time parameter deserves further explanation since it is -expressed in time units but must factor in energy consumption coefficients. - -The energy consumption of a cpu when it enters a power state can be roughly -characterised by the following graph: - - | - | - | - e | - n | /--- - e | /------ - r | /------ - g | /----- - y | /------ - | ---- - | /| - | / | - | / | - | / | - | / | - | / | - |/ | - -----|-------+---------------------------------- - 0| 1 time(ms) - - Graph 1: Energy vs time example - -The graph is split in two parts delimited by time 1ms on the X-axis. -The graph curve with X-axis values = { x | 0 < x < 1ms } has a steep slope -and denotes the energy costs incurred while entering and leaving the idle -state. -The graph curve in the area delimited by X-axis values = {x | x > 1ms } has -shallower slope and essentially represents the energy consumption of the idle -state. - -min-residency is defined for a given idle state as the minimum expected -residency time for a state (inclusive of preparation and entry) after -which choosing that state become the most energy efficient option. A good -way to visualise this, is by taking the same graph above and comparing some -states energy consumptions plots. - -For sake of simplicity, let's consider a system with two idle states IDLE1, -and IDLE2: - - | - | - | - | /-- IDLE1 - e | /--- - n | /---- - e | /--- - r | /-----/--------- IDLE2 - g | /-------/--------- - y | ------------ /---| - | / /---- | - | / /--- | - | / /---- | - | / /--- | - | --- | - | / | - | / | - |/ | time - ---/----------------------------+------------------------ - |IDLE1-energy < IDLE2-energy | IDLE2-energy < IDLE1-energy - | - IDLE2-min-residency - - Graph 2: idle states min-residency example - -In graph 2 above, that takes into account idle states entry/exit energy -costs, it is clear that if the idle state residency time (i.e. time till next -wake-up IRQ) is less than IDLE2-min-residency, IDLE1 is the better idle state -choice energywise. - -This is mainly down to the fact that IDLE1 entry/exit energy costs are lower -than IDLE2. - -However, the lower power consumption (i.e. shallower energy curve slope) of -idle state IDLE2 implies that after a suitable time, IDLE2 becomes more energy -efficient. - -The time at which IDLE2 becomes more energy efficient than IDLE1 (and other -shallower states in a system with multiple idle states) is defined -IDLE2-min-residency and corresponds to the time when energy consumption of -IDLE1 and IDLE2 states breaks even. - -The definitions provided in this section underpin the idle states -properties specification that is the subject of the following sections. - -=========================================== -3 - idle-states node -=========================================== - -ARM processor idle states are defined within the idle-states node, which is -a direct child of the cpus node [1] and provides a container where the -processor idle states, defined as device tree nodes, are listed. - -- idle-states node - - Usage: Optional - On ARM systems, it is a container of processor idle - states nodes. If the system does not provide CPU - power management capabilities, or the processor just - supports idle_standby, an idle-states node is not - required. - - Description: idle-states node is a container node, where its - subnodes describe the CPU idle states. - - Node name must be "idle-states". - - The idle-states node's parent node must be the cpus node. - - The idle-states node's child nodes can be: - - - one or more state nodes - - Any other configuration is considered invalid. - - An idle-states node defines the following properties: - - - entry-method - Value type: <stringlist> - Usage and definition depend on ARM architecture version. - # On ARM v8 64-bit this property is required and must - be: - - "psci" - # On ARM 32-bit systems this property is optional - -This assumes that the "enable-method" property is set to "psci" in the cpu -node[6] that is responsible for setting up CPU idle management in the OS -implementation. - -The nodes describing the idle states (state) can only be defined -within the idle-states node, any other configuration is considered invalid -and therefore must be ignored. - -=========================================== -4 - state node -=========================================== - -A state node represents an idle state description and must be defined as -follows: - -- state node - - Description: must be child of the idle-states node - - The state node name shall follow standard device tree naming - rules ([5], 2.2.1 "Node names"), in particular state nodes which - are siblings within a single common parent must be given a unique name. - - The idle state entered by executing the wfi instruction (idle_standby - SBSA,[3][4]) is considered standard on all ARM platforms and therefore - must not be listed. - - With the definitions provided above, the following list represents - the valid properties for a state node: - - - compatible - Usage: Required - Value type: <stringlist> - Definition: Must be "arm,idle-state". - - - local-timer-stop - Usage: See definition - Value type: <none> - Definition: if present the CPU local timer control logic is - lost on state entry, otherwise it is retained. - - - entry-latency-us - Usage: Required - Value type: <prop-encoded-array> - Definition: u32 value representing worst case latency in - microseconds required to enter the idle state. - - - exit-latency-us - Usage: Required - Value type: <prop-encoded-array> - Definition: u32 value representing worst case latency - in microseconds required to exit the idle state. - The exit-latency-us duration may be guaranteed - only after entry-latency-us has passed. - - - min-residency-us - Usage: Required - Value type: <prop-encoded-array> - Definition: u32 value representing minimum residency duration - in microseconds, inclusive of preparation and - entry, for this idle state to be considered - worthwhile energy wise (refer to section 2 of - this document for a complete description). - - - wakeup-latency-us: - Usage: Optional - Value type: <prop-encoded-array> - Definition: u32 value representing maximum delay between the - signaling of a wake-up event and the CPU being - able to execute normal code again. If omitted, - this is assumed to be equal to: - - entry-latency-us + exit-latency-us - - It is important to supply this value on systems - where the duration of PREP phase (see diagram 1, - section 2) is non-neglibigle. - In such systems entry-latency-us + exit-latency-us - will exceed wakeup-latency-us by this duration. - - - status: - Usage: Optional - Value type: <string> - Definition: A standard device tree property [5] that indicates - the operational status of an idle-state. - If present, it shall be: - "okay": to indicate that the idle state is - operational. - "disabled": to indicate that the idle state has - been disabled in firmware so it is not - operational. - If the property is not present the idle-state must - be considered operational. - - - idle-state-name: - Usage: Optional - Value type: <string> - Definition: A string used as a descriptive name for the idle - state. - - In addition to the properties listed above, a state node may require - additional properties specific to the entry-method defined in the - idle-states node. Please refer to the entry-method bindings - documentation for properties definitions. - -=========================================== -4 - Examples -=========================================== - -Example 1 (ARM 64-bit, 16-cpu system, PSCI enable-method): - -cpus { - #size-cells = <0>; - #address-cells = <2>; - - CPU0: cpu@0 { - device_type = "cpu"; - compatible = "arm,cortex-a57"; - reg = <0x0 0x0>; - enable-method = "psci"; - cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0 - &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>; - }; - - CPU1: cpu@1 { - device_type = "cpu"; - compatible = "arm,cortex-a57"; - reg = <0x0 0x1>; - enable-method = "psci"; - cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0 - &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>; - }; - - CPU2: cpu@100 { - device_type = "cpu"; - compatible = "arm,cortex-a57"; - reg = <0x0 0x100>; - enable-method = "psci"; - cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0 - &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>; - }; - - CPU3: cpu@101 { - device_type = "cpu"; - compatible = "arm,cortex-a57"; - reg = <0x0 0x101>; - enable-method = "psci"; - cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0 - &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>; - }; - - CPU4: cpu@10000 { - device_type = "cpu"; - compatible = "arm,cortex-a57"; - reg = <0x0 0x10000>; - enable-method = "psci"; - cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0 - &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>; - }; - - CPU5: cpu@10001 { - device_type = "cpu"; - compatible = "arm,cortex-a57"; - reg = <0x0 0x10001>; - enable-method = "psci"; - cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0 - &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>; - }; - - CPU6: cpu@10100 { - device_type = "cpu"; - compatible = "arm,cortex-a57"; - reg = <0x0 0x10100>; - enable-method = "psci"; - cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0 - &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>; - }; - - CPU7: cpu@10101 { - device_type = "cpu"; - compatible = "arm,cortex-a57"; - reg = <0x0 0x10101>; - enable-method = "psci"; - cpu-idle-states = <&CPU_RETENTION_0_0 &CPU_SLEEP_0_0 - &CLUSTER_RETENTION_0 &CLUSTER_SLEEP_0>; - }; - - CPU8: cpu@100000000 { - device_type = "cpu"; - compatible = "arm,cortex-a53"; - reg = <0x1 0x0>; - enable-method = "psci"; - cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0 - &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>; - }; - - CPU9: cpu@100000001 { - device_type = "cpu"; - compatible = "arm,cortex-a53"; - reg = <0x1 0x1>; - enable-method = "psci"; - cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0 - &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>; - }; - - CPU10: cpu@100000100 { - device_type = "cpu"; - compatible = "arm,cortex-a53"; - reg = <0x1 0x100>; - enable-method = "psci"; - cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0 - &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>; - }; - - CPU11: cpu@100000101 { - device_type = "cpu"; - compatible = "arm,cortex-a53"; - reg = <0x1 0x101>; - enable-method = "psci"; - cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0 - &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>; - }; - - CPU12: cpu@100010000 { - device_type = "cpu"; - compatible = "arm,cortex-a53"; - reg = <0x1 0x10000>; - enable-method = "psci"; - cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0 - &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>; - }; - - CPU13: cpu@100010001 { - device_type = "cpu"; - compatible = "arm,cortex-a53"; - reg = <0x1 0x10001>; - enable-method = "psci"; - cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0 - &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>; - }; - - CPU14: cpu@100010100 { - device_type = "cpu"; - compatible = "arm,cortex-a53"; - reg = <0x1 0x10100>; - enable-method = "psci"; - cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0 - &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>; - }; - - CPU15: cpu@100010101 { - device_type = "cpu"; - compatible = "arm,cortex-a53"; - reg = <0x1 0x10101>; - enable-method = "psci"; - cpu-idle-states = <&CPU_RETENTION_1_0 &CPU_SLEEP_1_0 - &CLUSTER_RETENTION_1 &CLUSTER_SLEEP_1>; - }; - - idle-states { - entry-method = "psci"; - - CPU_RETENTION_0_0: cpu-retention-0-0 { - compatible = "arm,idle-state"; - arm,psci-suspend-param = <0x0010000>; - entry-latency-us = <20>; - exit-latency-us = <40>; - min-residency-us = <80>; - }; - - CLUSTER_RETENTION_0: cluster-retention-0 { - compatible = "arm,idle-state"; - local-timer-stop; - arm,psci-suspend-param = <0x1010000>; - entry-latency-us = <50>; - exit-latency-us = <100>; - min-residency-us = <250>; - wakeup-latency-us = <130>; - }; - - CPU_SLEEP_0_0: cpu-sleep-0-0 { - compatible = "arm,idle-state"; - local-timer-stop; - arm,psci-suspend-param = <0x0010000>; - entry-latency-us = <250>; - exit-latency-us = <500>; - min-residency-us = <950>; - }; - - CLUSTER_SLEEP_0: cluster-sleep-0 { - compatible = "arm,idle-state"; - local-timer-stop; - arm,psci-suspend-param = <0x1010000>; - entry-latency-us = <600>; - exit-latency-us = <1100>; - min-residency-us = <2700>; - wakeup-latency-us = <1500>; - }; - - CPU_RETENTION_1_0: cpu-retention-1-0 { - compatible = "arm,idle-state"; - arm,psci-suspend-param = <0x0010000>; - entry-latency-us = <20>; - exit-latency-us = <40>; - min-residency-us = <90>; - }; - - CLUSTER_RETENTION_1: cluster-retention-1 { - compatible = "arm,idle-state"; - local-timer-stop; - arm,psci-suspend-param = <0x1010000>; - entry-latency-us = <50>; - exit-latency-us = <100>; - min-residency-us = <270>; - wakeup-latency-us = <100>; - }; - - CPU_SLEEP_1_0: cpu-sleep-1-0 { - compatible = "arm,idle-state"; - local-timer-stop; - arm,psci-suspend-param = <0x0010000>; - entry-latency-us = <70>; - exit-latency-us = <100>; - min-residency-us = <300>; - wakeup-latency-us = <150>; - }; - - CLUSTER_SLEEP_1: cluster-sleep-1 { - compatible = "arm,idle-state"; - local-timer-stop; - arm,psci-suspend-param = <0x1010000>; - entry-latency-us = <500>; - exit-latency-us = <1200>; - min-residency-us = <3500>; - wakeup-latency-us = <1300>; - }; - }; - -}; - -Example 2 (ARM 32-bit, 8-cpu system, two clusters): - -cpus { - #size-cells = <0>; - #address-cells = <1>; - - CPU0: cpu@0 { - device_type = "cpu"; - compatible = "arm,cortex-a15"; - reg = <0x0>; - cpu-idle-states = <&CPU_SLEEP_0_0 &CLUSTER_SLEEP_0>; - }; - - CPU1: cpu@1 { - device_type = "cpu"; - compatible = "arm,cortex-a15"; - reg = <0x1>; - cpu-idle-states = <&CPU_SLEEP_0_0 &CLUSTER_SLEEP_0>; - }; - - CPU2: cpu@2 { - device_type = "cpu"; - compatible = "arm,cortex-a15"; - reg = <0x2>; - cpu-idle-states = <&CPU_SLEEP_0_0 &CLUSTER_SLEEP_0>; - }; - - CPU3: cpu@3 { - device_type = "cpu"; - compatible = "arm,cortex-a15"; - reg = <0x3>; - cpu-idle-states = <&CPU_SLEEP_0_0 &CLUSTER_SLEEP_0>; - }; - - CPU4: cpu@100 { - device_type = "cpu"; - compatible = "arm,cortex-a7"; - reg = <0x100>; - cpu-idle-states = <&CPU_SLEEP_1_0 &CLUSTER_SLEEP_1>; - }; - - CPU5: cpu@101 { - device_type = "cpu"; - compatible = "arm,cortex-a7"; - reg = <0x101>; - cpu-idle-states = <&CPU_SLEEP_1_0 &CLUSTER_SLEEP_1>; - }; - - CPU6: cpu@102 { - device_type = "cpu"; - compatible = "arm,cortex-a7"; - reg = <0x102>; - cpu-idle-states = <&CPU_SLEEP_1_0 &CLUSTER_SLEEP_1>; - }; - - CPU7: cpu@103 { - device_type = "cpu"; - compatible = "arm,cortex-a7"; - reg = <0x103>; - cpu-idle-states = <&CPU_SLEEP_1_0 &CLUSTER_SLEEP_1>; - }; - - idle-states { - CPU_SLEEP_0_0: cpu-sleep-0-0 { - compatible = "arm,idle-state"; - local-timer-stop; - entry-latency-us = <200>; - exit-latency-us = <100>; - min-residency-us = <400>; - wakeup-latency-us = <250>; - }; - - CLUSTER_SLEEP_0: cluster-sleep-0 { - compatible = "arm,idle-state"; - local-timer-stop; - entry-latency-us = <500>; - exit-latency-us = <1500>; - min-residency-us = <2500>; - wakeup-latency-us = <1700>; - }; - - CPU_SLEEP_1_0: cpu-sleep-1-0 { - compatible = "arm,idle-state"; - local-timer-stop; - entry-latency-us = <300>; - exit-latency-us = <500>; - min-residency-us = <900>; - wakeup-latency-us = <600>; - }; - - CLUSTER_SLEEP_1: cluster-sleep-1 { - compatible = "arm,idle-state"; - local-timer-stop; - entry-latency-us = <800>; - exit-latency-us = <2000>; - min-residency-us = <6500>; - wakeup-latency-us = <2300>; - }; - }; - -}; - -=========================================== -5 - References -=========================================== - -[1] ARM Linux Kernel documentation - CPUs bindings - Documentation/devicetree/bindings/arm/cpus.yaml - -[2] ARM Linux Kernel documentation - PSCI bindings - Documentation/devicetree/bindings/arm/psci.yaml - -[3] ARM Server Base System Architecture (SBSA) - http://infocenter.arm.com/help/index.jsp - -[4] ARM Architecture Reference Manuals - http://infocenter.arm.com/help/index.jsp - -[5] Devicetree Specification - https://www.devicetree.org/specifications/ - -[6] ARM Linux Kernel documentation - Booting AArch64 Linux - Documentation/arm64/booting.rst |